Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 7, No. 2, May 2022
  4. Articles

Issue

Vol. 7, No. 2, May 2022

Issue Published : May 31, 2022
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

XGB-Hybrid Fingerprint Classification Model for Virtual Screening of Meningitis Drug Compounds Candidate

https://doi.org/10.22219/kinetik.v7i2.1424
Mohammad Hamim Zajuli Al Faroby
Institut Teknologi Telkom Surabaya
Helisyah Nur Fadhilah
Institut Teknologi Telkom Surabaya
Siti Amiroch
Universitas Islam Darul 'ulum Lamongan
Rahmat Sigit Hidayat
Institut Teknologi Telkom Surabaya

Corresponding Author(s) : Mohammad Hamim Zajuli Al Faroby

alfaroby@ittelkom-sby.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 7, No. 2, May 2022
Article Published : May 31, 2022

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Meningitis is an infection of the lining of the brain caused by diffuse inflammation, and this condition is caused by viruses or bacteria that cause Meningitis. Prevention for this disease is still in the form of strengthening antibodies with vaccines. There is no significant compound to relieve or treat Meningitis patients. In previous studies, they got seven proteins vital to Meningitis. We continued to investigate the compounds associated with the seven proteins. We chose the in-silico process by utilizing data in an open database. We use several databases for the data collection process. After that, the compound data were extracted for bonding features and chemical elements using molecular fingerprints. We use two fingerprint methods, where both we combine with three types of combinations. The combined results produce three types of datasets with different matrix sizes. We establish the Extreme Gradient Boosting (XGB) method to form the classification model for the three datasets, select the best classification model, and compare it with other classification algorithms. The XGB model has better quality than the classification model of other algorithms. We used this model to predict and quantify compounds that strongly bind to seven vital meningitis proteins. The compound with the highest predictive score (we found more than 0.99) became a drug candidate to inhibit or neutralize Meningitis.

Keywords

Drug Screening Molecular Fingerprint Extreme Gradient Boosting Machine Learning Meningitis
Al Faroby, M. H. Z., Fadhilah, H. N., Amiroch, S., & Hidayat, R. S. (2022). XGB-Hybrid Fingerprint Classification Model for Virtual Screening of Meningitis Drug Compounds Candidate. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 7(2). https://doi.org/10.22219/kinetik.v7i2.1424
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. A. Kohil, S. Jemmieh, M. K. Smatti, and H. M. Yassine, “Viral meningitis: an overview,” Arch. Virol., vol. 166, no. 2, pp. 335–345, Jan. 2021, doi: 10.1007/S00705-020-04891-1.
  2. T. A. Erickson et al., “The Epidemiology of Meningitis in Infants under 90 Days of Age in a Large Pediatric Hospital,” Microorganisms, vol. 9, no. 3, p. 526, Mar. 2021, doi: 10.3390/MICROORGANISMS9030526.
  3. Y. Nong, Y. Liang, X. Liang, Y. Li, and B. Yang, “Pharmacological targets and mechanisms of calycosin against meningitis,” Aging (Albany. NY)., vol. 12, no. 19, pp. 19468–19476, 2020, doi: 10.18632/aging.103886.
  4. M. H. Z. Al Faroby, M. I. Irawan, and N. N. T. Puspaningsih, “Prediction insulin-protein interactions associated based on ontology genes using extreme gradient boosting and centrality method,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Contr, vol. 4, no. 5, pp. 253–262, 2020, doi: https://doi.org/10.22219/kinetik.v5i4.107.
  5. T. B. Kimber, Y. Chen, and A. Volkamer, “Deep Learning in Virtual Screening: Recent Applications and Developments,” Int. J. Mol. Sci., vol. 22, no. 9, p. 4435, Apr. 2021, doi: 10.3390/IJMS22094435.
  6. Y. Liu et al., “Machine Learning Models for the Classification of CK2 Natural Products Inhibitors with Molecular Fingerprint Descriptors,” Processes, vol. 9, no. 11, p. 2074, Nov. 2021, doi: 10.3390/PR9112074.
  7. N. R. Das, S. P. Mishra, and P. G. R. Achary, “Evaluation of molecular structure based descriptors for the prediction of pEC50(M) for the selective adenosine A2A Receptor,” J. Mol. Struct., vol. 1232, p. 130080, May 2021, doi: 10.1016/J.MOLSTRUC.2021.130080.
  8. N. Principi and S. Esposito, “Bacterial meningitis: new treatment options to reduce the risk of brain damage,” Expert Opin. Pharmacother., vol. 21, no. 1, pp. 97–105, Jan. 2019, doi: 10.1080/14656566.2019.1685497.
  9. S. Das, S. Sarmah, S. Lyndem, and A. Singha Roy, “An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study,” J. Biomol. Struct. Dyn., vol. 39, no. 9, pp. 3347–3357, 2021, doi: 10.1080/07391102.2020.1763201/SUPPL_FILE/TBSD_A_1763201_SM9561.PDF.
  10. F. Fernando, M. I. Irawan, and A. Fadlan, “Bat Algorithm for Solving Molecular Docking of Alkaloid Compound SA2014 Towards Cyclin D1 Protein in Cancer,” J. Phys. Conf. Ser., vol. 1366, no. 1, 2019, doi: 10.1088/1742-6596/1366/1/012089.
  11. S. Lim and Y. O. Lee, “Predicting chemical properties using self-attention multi-task learning based on SMILES representation,” in Proceedings - International Conference on Pattern Recognition, 2020, pp. 3146–3153, doi: 10.1109/ICPR48806.2021.9412555.
  12. L. Gentiluomo et al., “Application of interpretable artificial neural networks to early monoclonal antibodies development,” Eur. J. Pharm. Biopharm., vol. 141, pp. 81–89, Aug. 2019, doi: 10.1016/j.ejpb.2019.05.017.
  13. J. W. Liang, M. Y. Wang, S. Wang, S. L. Li, W. Q. Li, and F. H. Meng, “Identification of novel CDK2 inhibitors by a multistage virtual screening method based on SVM, pharmacophore and docking model,” J. Enzyme Inhib. Med. Chem., vol. 35, no. 1, pp. 235–244, Jan. 2020, doi: 10.1080/14756366.2019.1693702/SUPPL_FILE/IENZ_A_1693702_SM2142.ZIP.
  14. Y. Zhou et al., “Quantitative Structure-Activity Relationship (QSAR) Model for the Severity Prediction of Drug-Induced Rhabdomyolysis by Using Random Forest,” Chem. Res. Toxicol., vol. 34, no. 2, pp. 514–521, Feb. 2021, doi: 10.1021/ACS.CHEMRESTOX.0C00347/SUPPL_FILE/TX0C00347_SI_001.ZIP.
  15. C. Schneider, A. Buchanan, B. Taddese, and C. M. Deane, “DLAB: deep learning methods for structure-based virtual screening of antibodies,” Bioinformatics, vol. 38, no. 2, pp. 377–383, Jan. 2022, doi: 10.1093/BIOINFORMATICS/BTAB660.
  16. S. Pokhrel et al., “Spike protein recognizer receptor ACE2 targeted identification of potential natural antiviral drug candidates against SARS-CoV-2,” Int. J. Biol. Macromol., vol. 191, pp. 1114–1125, Nov. 2021, doi: 10.1016/J.IJBIOMAC.2021.09.146.
  17. F. M. I. Hunter, A. P. Bento, N. Bosc, A. Gaulton, A. Hersey, and A. R. Leach, “Drug Safety Data Curation and Modeling in ChEMBL: Boxed Warnings and Withdrawn Drugs,” Chem. Res. Toxicol., vol. 34, no. 2, pp. 385–395, Feb. 2021, doi: 10.1021/ACS.CHEMRESTOX.0C00296/SUPPL_FILE/TX0C00296_SI_002.ZIP.
  18. K. Nandhini and G. V Sriramakrishnan, “A Review of Drug Target Interaction Prognostication Using Artificial Intelligence,” Ann. Rom. Soc. Cell Biol., vol. 25, pp. 832–838, May 2021, Accessed: Jan. 24, 2022. [Online]. Available: https://www.annalsofrscb.ro/index.php/journal/article/view/4424.
  19. M. D. M. Fernández-Arjona, J. M. Grondona, P. Fernández-Llebrez, and M. D. López-Ávalos, “Microglial activation by microbial neuraminidase through TLR2 and TLR4 receptors,” J. Neuroinflammation, vol. 16, no. 1, 2019, doi: 10.1186/s12974-019-1643-9.
  20. A. Capecchi, M. Awale, D. Probst, and J. Reymond, “PubChem and ChEMBL beyond Lipinski,” Mol. Inform., vol. 38, no. 5, p. 1900016, May 2019, doi: 10.1002/minf.201900016.
  21. Y. Hua, Y. Shi, X. Cui, and X. Li, “In silico prediction of chemical-induced hematotoxicity with machine learning and deep learning methods,” Mol. Divers., vol. 25, no. 3, pp. 1585–1596, Aug. 2021, doi: 10.1007/S11030-021-10255-X/TABLES/4.
  22. T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 785–794, doi: 10.1145/2939672.2939785.
  23. X. Su and M. Bai, “Stochastic gradient boosting frequency-severity model of insurance claims,” PLoS One, vol. 15, no. 8, p. e0238000, Aug. 2020, doi: 10.1371/JOURNAL.PONE.0238000.
  24. S. Kabiraj et al., “Breast Cancer Risk Prediction using XGBoost and Random Forest Algorithm,” Jul. 2020, doi: 10.1109/ICCCNT49239.2020.9225451.
  25. H. Kuswanto, R. Y. Nurhidayah, and H. Ohwada, “Comparison of Feature Selection Methods to Classify Inhibitors in DUD-E Database,” in Procedia Computer Science, Jan. 2018, vol. 144, pp. 194–202, doi: 10.1016/j.procs.2018.10.519.
  26. S. Kim et al., “PubChem in 2021: new data content and improved web interfaces,” Nucleic Acids Res., vol. 49, no. D1, pp. D1388–D1395, Jan. 2021, doi: 10.1093/NAR/GKAA971.
  27. A. Capecchi, D. Probst, and J. L. Reymond, “One molecular fingerprint to rule them all: Drugs, biomolecules, and the metabolome,” J. Cheminform., vol. 12, no. 1, pp. 1–15, Jun. 2020, doi: 10.1186/S13321-020-00445-4/FIGURES/8.
  28. N. Hecker et al., “SuperTarget goes quantitative: Update on drug-target interactions,” Nucleic Acids Res., vol. 40, no. D1, Jan. 2012, doi: 10.1093/nar/gkr912.
  29. T. Mancini, I. Melatti, and E. Tronci, “Any-horizon uniform random sampling and enumeration of constrained scenarios for simulation-based formal verification,” IEEE Trans. Softw. Eng., 2021, doi: 10.1109/TSE.2021.3109842.
  30. A. Salazar, L. Vergara, and G. Safont, “Generative Adversarial Networks and Markov Random Fields for oversampling very small training sets,” Expert Syst. Appl., vol. 163, p. 113819, Jan. 2021, doi: 10.1016/J.ESWA.2020.113819.
  31. Y. Peng and M. H. Nagata, “An empirical overview of nonlinearity and overfitting in machine learning using COVID-19 data,” Chaos, Solitons & Fractals, vol. 139, p. 110055, Oct. 2020, doi: 10.1016/J.CHAOS.2020.110055.
  32. M. Rahman, Y. Cao, X. Sun, B. Li, and Y. Hao, “Deep pre-trained networks as a feature extractor with XGBoost to detect tuberculosis from chest X-ray,” Comput. Electr. Eng., vol. 93, p. 107252, Jul. 2021, doi: 10.1016/J.COMPELECENG.2021.107252.
Read More

References


A. Kohil, S. Jemmieh, M. K. Smatti, and H. M. Yassine, “Viral meningitis: an overview,” Arch. Virol., vol. 166, no. 2, pp. 335–345, Jan. 2021, doi: 10.1007/S00705-020-04891-1.

T. A. Erickson et al., “The Epidemiology of Meningitis in Infants under 90 Days of Age in a Large Pediatric Hospital,” Microorganisms, vol. 9, no. 3, p. 526, Mar. 2021, doi: 10.3390/MICROORGANISMS9030526.

Y. Nong, Y. Liang, X. Liang, Y. Li, and B. Yang, “Pharmacological targets and mechanisms of calycosin against meningitis,” Aging (Albany. NY)., vol. 12, no. 19, pp. 19468–19476, 2020, doi: 10.18632/aging.103886.

M. H. Z. Al Faroby, M. I. Irawan, and N. N. T. Puspaningsih, “Prediction insulin-protein interactions associated based on ontology genes using extreme gradient boosting and centrality method,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Contr, vol. 4, no. 5, pp. 253–262, 2020, doi: https://doi.org/10.22219/kinetik.v5i4.107.

T. B. Kimber, Y. Chen, and A. Volkamer, “Deep Learning in Virtual Screening: Recent Applications and Developments,” Int. J. Mol. Sci., vol. 22, no. 9, p. 4435, Apr. 2021, doi: 10.3390/IJMS22094435.

Y. Liu et al., “Machine Learning Models for the Classification of CK2 Natural Products Inhibitors with Molecular Fingerprint Descriptors,” Processes, vol. 9, no. 11, p. 2074, Nov. 2021, doi: 10.3390/PR9112074.

N. R. Das, S. P. Mishra, and P. G. R. Achary, “Evaluation of molecular structure based descriptors for the prediction of pEC50(M) for the selective adenosine A2A Receptor,” J. Mol. Struct., vol. 1232, p. 130080, May 2021, doi: 10.1016/J.MOLSTRUC.2021.130080.

N. Principi and S. Esposito, “Bacterial meningitis: new treatment options to reduce the risk of brain damage,” Expert Opin. Pharmacother., vol. 21, no. 1, pp. 97–105, Jan. 2019, doi: 10.1080/14656566.2019.1685497.

S. Das, S. Sarmah, S. Lyndem, and A. Singha Roy, “An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study,” J. Biomol. Struct. Dyn., vol. 39, no. 9, pp. 3347–3357, 2021, doi: 10.1080/07391102.2020.1763201/SUPPL_FILE/TBSD_A_1763201_SM9561.PDF.

F. Fernando, M. I. Irawan, and A. Fadlan, “Bat Algorithm for Solving Molecular Docking of Alkaloid Compound SA2014 Towards Cyclin D1 Protein in Cancer,” J. Phys. Conf. Ser., vol. 1366, no. 1, 2019, doi: 10.1088/1742-6596/1366/1/012089.

S. Lim and Y. O. Lee, “Predicting chemical properties using self-attention multi-task learning based on SMILES representation,” in Proceedings - International Conference on Pattern Recognition, 2020, pp. 3146–3153, doi: 10.1109/ICPR48806.2021.9412555.

L. Gentiluomo et al., “Application of interpretable artificial neural networks to early monoclonal antibodies development,” Eur. J. Pharm. Biopharm., vol. 141, pp. 81–89, Aug. 2019, doi: 10.1016/j.ejpb.2019.05.017.

J. W. Liang, M. Y. Wang, S. Wang, S. L. Li, W. Q. Li, and F. H. Meng, “Identification of novel CDK2 inhibitors by a multistage virtual screening method based on SVM, pharmacophore and docking model,” J. Enzyme Inhib. Med. Chem., vol. 35, no. 1, pp. 235–244, Jan. 2020, doi: 10.1080/14756366.2019.1693702/SUPPL_FILE/IENZ_A_1693702_SM2142.ZIP.

Y. Zhou et al., “Quantitative Structure-Activity Relationship (QSAR) Model for the Severity Prediction of Drug-Induced Rhabdomyolysis by Using Random Forest,” Chem. Res. Toxicol., vol. 34, no. 2, pp. 514–521, Feb. 2021, doi: 10.1021/ACS.CHEMRESTOX.0C00347/SUPPL_FILE/TX0C00347_SI_001.ZIP.

C. Schneider, A. Buchanan, B. Taddese, and C. M. Deane, “DLAB: deep learning methods for structure-based virtual screening of antibodies,” Bioinformatics, vol. 38, no. 2, pp. 377–383, Jan. 2022, doi: 10.1093/BIOINFORMATICS/BTAB660.

S. Pokhrel et al., “Spike protein recognizer receptor ACE2 targeted identification of potential natural antiviral drug candidates against SARS-CoV-2,” Int. J. Biol. Macromol., vol. 191, pp. 1114–1125, Nov. 2021, doi: 10.1016/J.IJBIOMAC.2021.09.146.

F. M. I. Hunter, A. P. Bento, N. Bosc, A. Gaulton, A. Hersey, and A. R. Leach, “Drug Safety Data Curation and Modeling in ChEMBL: Boxed Warnings and Withdrawn Drugs,” Chem. Res. Toxicol., vol. 34, no. 2, pp. 385–395, Feb. 2021, doi: 10.1021/ACS.CHEMRESTOX.0C00296/SUPPL_FILE/TX0C00296_SI_002.ZIP.

K. Nandhini and G. V Sriramakrishnan, “A Review of Drug Target Interaction Prognostication Using Artificial Intelligence,” Ann. Rom. Soc. Cell Biol., vol. 25, pp. 832–838, May 2021, Accessed: Jan. 24, 2022. [Online]. Available: https://www.annalsofrscb.ro/index.php/journal/article/view/4424.

M. D. M. Fernández-Arjona, J. M. Grondona, P. Fernández-Llebrez, and M. D. López-Ávalos, “Microglial activation by microbial neuraminidase through TLR2 and TLR4 receptors,” J. Neuroinflammation, vol. 16, no. 1, 2019, doi: 10.1186/s12974-019-1643-9.

A. Capecchi, M. Awale, D. Probst, and J. Reymond, “PubChem and ChEMBL beyond Lipinski,” Mol. Inform., vol. 38, no. 5, p. 1900016, May 2019, doi: 10.1002/minf.201900016.

Y. Hua, Y. Shi, X. Cui, and X. Li, “In silico prediction of chemical-induced hematotoxicity with machine learning and deep learning methods,” Mol. Divers., vol. 25, no. 3, pp. 1585–1596, Aug. 2021, doi: 10.1007/S11030-021-10255-X/TABLES/4.

T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 785–794, doi: 10.1145/2939672.2939785.

X. Su and M. Bai, “Stochastic gradient boosting frequency-severity model of insurance claims,” PLoS One, vol. 15, no. 8, p. e0238000, Aug. 2020, doi: 10.1371/JOURNAL.PONE.0238000.

S. Kabiraj et al., “Breast Cancer Risk Prediction using XGBoost and Random Forest Algorithm,” Jul. 2020, doi: 10.1109/ICCCNT49239.2020.9225451.

H. Kuswanto, R. Y. Nurhidayah, and H. Ohwada, “Comparison of Feature Selection Methods to Classify Inhibitors in DUD-E Database,” in Procedia Computer Science, Jan. 2018, vol. 144, pp. 194–202, doi: 10.1016/j.procs.2018.10.519.

S. Kim et al., “PubChem in 2021: new data content and improved web interfaces,” Nucleic Acids Res., vol. 49, no. D1, pp. D1388–D1395, Jan. 2021, doi: 10.1093/NAR/GKAA971.

A. Capecchi, D. Probst, and J. L. Reymond, “One molecular fingerprint to rule them all: Drugs, biomolecules, and the metabolome,” J. Cheminform., vol. 12, no. 1, pp. 1–15, Jun. 2020, doi: 10.1186/S13321-020-00445-4/FIGURES/8.

N. Hecker et al., “SuperTarget goes quantitative: Update on drug-target interactions,” Nucleic Acids Res., vol. 40, no. D1, Jan. 2012, doi: 10.1093/nar/gkr912.

T. Mancini, I. Melatti, and E. Tronci, “Any-horizon uniform random sampling and enumeration of constrained scenarios for simulation-based formal verification,” IEEE Trans. Softw. Eng., 2021, doi: 10.1109/TSE.2021.3109842.

A. Salazar, L. Vergara, and G. Safont, “Generative Adversarial Networks and Markov Random Fields for oversampling very small training sets,” Expert Syst. Appl., vol. 163, p. 113819, Jan. 2021, doi: 10.1016/J.ESWA.2020.113819.

Y. Peng and M. H. Nagata, “An empirical overview of nonlinearity and overfitting in machine learning using COVID-19 data,” Chaos, Solitons & Fractals, vol. 139, p. 110055, Oct. 2020, doi: 10.1016/J.CHAOS.2020.110055.

M. Rahman, Y. Cao, X. Sun, B. Li, and Y. Hao, “Deep pre-trained networks as a feature extractor with XGBoost to detect tuberculosis from chest X-ray,” Comput. Electr. Eng., vol. 93, p. 107252, Jul. 2021, doi: 10.1016/J.COMPELECENG.2021.107252.

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 35 Download : 16

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License