Issue
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
XGB-Hybrid Fingerprint Classification Model for Virtual Screening of Meningitis Drug Compounds Candidate
Corresponding Author(s) : Mohammad Hamim Zajuli Al Faroby
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 7, No. 2, May 2022
Abstract
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Kohil, S. Jemmieh, M. K. Smatti, and H. M. Yassine, “Viral meningitis: an overview,” Arch. Virol., vol. 166, no. 2, pp. 335–345, Jan. 2021, doi: 10.1007/S00705-020-04891-1.
- T. A. Erickson et al., “The Epidemiology of Meningitis in Infants under 90 Days of Age in a Large Pediatric Hospital,” Microorganisms, vol. 9, no. 3, p. 526, Mar. 2021, doi: 10.3390/MICROORGANISMS9030526.
- Y. Nong, Y. Liang, X. Liang, Y. Li, and B. Yang, “Pharmacological targets and mechanisms of calycosin against meningitis,” Aging (Albany. NY)., vol. 12, no. 19, pp. 19468–19476, 2020, doi: 10.18632/aging.103886.
- M. H. Z. Al Faroby, M. I. Irawan, and N. N. T. Puspaningsih, “Prediction insulin-protein interactions associated based on ontology genes using extreme gradient boosting and centrality method,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Contr, vol. 4, no. 5, pp. 253–262, 2020, doi: https://doi.org/10.22219/kinetik.v5i4.107.
- T. B. Kimber, Y. Chen, and A. Volkamer, “Deep Learning in Virtual Screening: Recent Applications and Developments,” Int. J. Mol. Sci., vol. 22, no. 9, p. 4435, Apr. 2021, doi: 10.3390/IJMS22094435.
- Y. Liu et al., “Machine Learning Models for the Classification of CK2 Natural Products Inhibitors with Molecular Fingerprint Descriptors,” Processes, vol. 9, no. 11, p. 2074, Nov. 2021, doi: 10.3390/PR9112074.
- N. R. Das, S. P. Mishra, and P. G. R. Achary, “Evaluation of molecular structure based descriptors for the prediction of pEC50(M) for the selective adenosine A2A Receptor,” J. Mol. Struct., vol. 1232, p. 130080, May 2021, doi: 10.1016/J.MOLSTRUC.2021.130080.
- N. Principi and S. Esposito, “Bacterial meningitis: new treatment options to reduce the risk of brain damage,” Expert Opin. Pharmacother., vol. 21, no. 1, pp. 97–105, Jan. 2019, doi: 10.1080/14656566.2019.1685497.
- S. Das, S. Sarmah, S. Lyndem, and A. Singha Roy, “An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study,” J. Biomol. Struct. Dyn., vol. 39, no. 9, pp. 3347–3357, 2021, doi: 10.1080/07391102.2020.1763201/SUPPL_FILE/TBSD_A_1763201_SM9561.PDF.
- F. Fernando, M. I. Irawan, and A. Fadlan, “Bat Algorithm for Solving Molecular Docking of Alkaloid Compound SA2014 Towards Cyclin D1 Protein in Cancer,” J. Phys. Conf. Ser., vol. 1366, no. 1, 2019, doi: 10.1088/1742-6596/1366/1/012089.
- S. Lim and Y. O. Lee, “Predicting chemical properties using self-attention multi-task learning based on SMILES representation,” in Proceedings - International Conference on Pattern Recognition, 2020, pp. 3146–3153, doi: 10.1109/ICPR48806.2021.9412555.
- L. Gentiluomo et al., “Application of interpretable artificial neural networks to early monoclonal antibodies development,” Eur. J. Pharm. Biopharm., vol. 141, pp. 81–89, Aug. 2019, doi: 10.1016/j.ejpb.2019.05.017.
- J. W. Liang, M. Y. Wang, S. Wang, S. L. Li, W. Q. Li, and F. H. Meng, “Identification of novel CDK2 inhibitors by a multistage virtual screening method based on SVM, pharmacophore and docking model,” J. Enzyme Inhib. Med. Chem., vol. 35, no. 1, pp. 235–244, Jan. 2020, doi: 10.1080/14756366.2019.1693702/SUPPL_FILE/IENZ_A_1693702_SM2142.ZIP.
- Y. Zhou et al., “Quantitative Structure-Activity Relationship (QSAR) Model for the Severity Prediction of Drug-Induced Rhabdomyolysis by Using Random Forest,” Chem. Res. Toxicol., vol. 34, no. 2, pp. 514–521, Feb. 2021, doi: 10.1021/ACS.CHEMRESTOX.0C00347/SUPPL_FILE/TX0C00347_SI_001.ZIP.
- C. Schneider, A. Buchanan, B. Taddese, and C. M. Deane, “DLAB: deep learning methods for structure-based virtual screening of antibodies,” Bioinformatics, vol. 38, no. 2, pp. 377–383, Jan. 2022, doi: 10.1093/BIOINFORMATICS/BTAB660.
- S. Pokhrel et al., “Spike protein recognizer receptor ACE2 targeted identification of potential natural antiviral drug candidates against SARS-CoV-2,” Int. J. Biol. Macromol., vol. 191, pp. 1114–1125, Nov. 2021, doi: 10.1016/J.IJBIOMAC.2021.09.146.
- F. M. I. Hunter, A. P. Bento, N. Bosc, A. Gaulton, A. Hersey, and A. R. Leach, “Drug Safety Data Curation and Modeling in ChEMBL: Boxed Warnings and Withdrawn Drugs,” Chem. Res. Toxicol., vol. 34, no. 2, pp. 385–395, Feb. 2021, doi: 10.1021/ACS.CHEMRESTOX.0C00296/SUPPL_FILE/TX0C00296_SI_002.ZIP.
- K. Nandhini and G. V Sriramakrishnan, “A Review of Drug Target Interaction Prognostication Using Artificial Intelligence,” Ann. Rom. Soc. Cell Biol., vol. 25, pp. 832–838, May 2021, Accessed: Jan. 24, 2022. [Online]. Available: https://www.annalsofrscb.ro/index.php/journal/article/view/4424.
- M. D. M. Fernández-Arjona, J. M. Grondona, P. Fernández-Llebrez, and M. D. López-Ávalos, “Microglial activation by microbial neuraminidase through TLR2 and TLR4 receptors,” J. Neuroinflammation, vol. 16, no. 1, 2019, doi: 10.1186/s12974-019-1643-9.
- A. Capecchi, M. Awale, D. Probst, and J. Reymond, “PubChem and ChEMBL beyond Lipinski,” Mol. Inform., vol. 38, no. 5, p. 1900016, May 2019, doi: 10.1002/minf.201900016.
- Y. Hua, Y. Shi, X. Cui, and X. Li, “In silico prediction of chemical-induced hematotoxicity with machine learning and deep learning methods,” Mol. Divers., vol. 25, no. 3, pp. 1585–1596, Aug. 2021, doi: 10.1007/S11030-021-10255-X/TABLES/4.
- T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 785–794, doi: 10.1145/2939672.2939785.
- X. Su and M. Bai, “Stochastic gradient boosting frequency-severity model of insurance claims,” PLoS One, vol. 15, no. 8, p. e0238000, Aug. 2020, doi: 10.1371/JOURNAL.PONE.0238000.
- S. Kabiraj et al., “Breast Cancer Risk Prediction using XGBoost and Random Forest Algorithm,” Jul. 2020, doi: 10.1109/ICCCNT49239.2020.9225451.
- H. Kuswanto, R. Y. Nurhidayah, and H. Ohwada, “Comparison of Feature Selection Methods to Classify Inhibitors in DUD-E Database,” in Procedia Computer Science, Jan. 2018, vol. 144, pp. 194–202, doi: 10.1016/j.procs.2018.10.519.
- S. Kim et al., “PubChem in 2021: new data content and improved web interfaces,” Nucleic Acids Res., vol. 49, no. D1, pp. D1388–D1395, Jan. 2021, doi: 10.1093/NAR/GKAA971.
- A. Capecchi, D. Probst, and J. L. Reymond, “One molecular fingerprint to rule them all: Drugs, biomolecules, and the metabolome,” J. Cheminform., vol. 12, no. 1, pp. 1–15, Jun. 2020, doi: 10.1186/S13321-020-00445-4/FIGURES/8.
- N. Hecker et al., “SuperTarget goes quantitative: Update on drug-target interactions,” Nucleic Acids Res., vol. 40, no. D1, Jan. 2012, doi: 10.1093/nar/gkr912.
- T. Mancini, I. Melatti, and E. Tronci, “Any-horizon uniform random sampling and enumeration of constrained scenarios for simulation-based formal verification,” IEEE Trans. Softw. Eng., 2021, doi: 10.1109/TSE.2021.3109842.
- A. Salazar, L. Vergara, and G. Safont, “Generative Adversarial Networks and Markov Random Fields for oversampling very small training sets,” Expert Syst. Appl., vol. 163, p. 113819, Jan. 2021, doi: 10.1016/J.ESWA.2020.113819.
- Y. Peng and M. H. Nagata, “An empirical overview of nonlinearity and overfitting in machine learning using COVID-19 data,” Chaos, Solitons & Fractals, vol. 139, p. 110055, Oct. 2020, doi: 10.1016/J.CHAOS.2020.110055.
- M. Rahman, Y. Cao, X. Sun, B. Li, and Y. Hao, “Deep pre-trained networks as a feature extractor with XGBoost to detect tuberculosis from chest X-ray,” Comput. Electr. Eng., vol. 93, p. 107252, Jul. 2021, doi: 10.1016/J.COMPELECENG.2021.107252.
References
A. Kohil, S. Jemmieh, M. K. Smatti, and H. M. Yassine, “Viral meningitis: an overview,” Arch. Virol., vol. 166, no. 2, pp. 335–345, Jan. 2021, doi: 10.1007/S00705-020-04891-1.
T. A. Erickson et al., “The Epidemiology of Meningitis in Infants under 90 Days of Age in a Large Pediatric Hospital,” Microorganisms, vol. 9, no. 3, p. 526, Mar. 2021, doi: 10.3390/MICROORGANISMS9030526.
Y. Nong, Y. Liang, X. Liang, Y. Li, and B. Yang, “Pharmacological targets and mechanisms of calycosin against meningitis,” Aging (Albany. NY)., vol. 12, no. 19, pp. 19468–19476, 2020, doi: 10.18632/aging.103886.
M. H. Z. Al Faroby, M. I. Irawan, and N. N. T. Puspaningsih, “Prediction insulin-protein interactions associated based on ontology genes using extreme gradient boosting and centrality method,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Contr, vol. 4, no. 5, pp. 253–262, 2020, doi: https://doi.org/10.22219/kinetik.v5i4.107.
T. B. Kimber, Y. Chen, and A. Volkamer, “Deep Learning in Virtual Screening: Recent Applications and Developments,” Int. J. Mol. Sci., vol. 22, no. 9, p. 4435, Apr. 2021, doi: 10.3390/IJMS22094435.
Y. Liu et al., “Machine Learning Models for the Classification of CK2 Natural Products Inhibitors with Molecular Fingerprint Descriptors,” Processes, vol. 9, no. 11, p. 2074, Nov. 2021, doi: 10.3390/PR9112074.
N. R. Das, S. P. Mishra, and P. G. R. Achary, “Evaluation of molecular structure based descriptors for the prediction of pEC50(M) for the selective adenosine A2A Receptor,” J. Mol. Struct., vol. 1232, p. 130080, May 2021, doi: 10.1016/J.MOLSTRUC.2021.130080.
N. Principi and S. Esposito, “Bacterial meningitis: new treatment options to reduce the risk of brain damage,” Expert Opin. Pharmacother., vol. 21, no. 1, pp. 97–105, Jan. 2019, doi: 10.1080/14656566.2019.1685497.
S. Das, S. Sarmah, S. Lyndem, and A. Singha Roy, “An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study,” J. Biomol. Struct. Dyn., vol. 39, no. 9, pp. 3347–3357, 2021, doi: 10.1080/07391102.2020.1763201/SUPPL_FILE/TBSD_A_1763201_SM9561.PDF.
F. Fernando, M. I. Irawan, and A. Fadlan, “Bat Algorithm for Solving Molecular Docking of Alkaloid Compound SA2014 Towards Cyclin D1 Protein in Cancer,” J. Phys. Conf. Ser., vol. 1366, no. 1, 2019, doi: 10.1088/1742-6596/1366/1/012089.
S. Lim and Y. O. Lee, “Predicting chemical properties using self-attention multi-task learning based on SMILES representation,” in Proceedings - International Conference on Pattern Recognition, 2020, pp. 3146–3153, doi: 10.1109/ICPR48806.2021.9412555.
L. Gentiluomo et al., “Application of interpretable artificial neural networks to early monoclonal antibodies development,” Eur. J. Pharm. Biopharm., vol. 141, pp. 81–89, Aug. 2019, doi: 10.1016/j.ejpb.2019.05.017.
J. W. Liang, M. Y. Wang, S. Wang, S. L. Li, W. Q. Li, and F. H. Meng, “Identification of novel CDK2 inhibitors by a multistage virtual screening method based on SVM, pharmacophore and docking model,” J. Enzyme Inhib. Med. Chem., vol. 35, no. 1, pp. 235–244, Jan. 2020, doi: 10.1080/14756366.2019.1693702/SUPPL_FILE/IENZ_A_1693702_SM2142.ZIP.
Y. Zhou et al., “Quantitative Structure-Activity Relationship (QSAR) Model for the Severity Prediction of Drug-Induced Rhabdomyolysis by Using Random Forest,” Chem. Res. Toxicol., vol. 34, no. 2, pp. 514–521, Feb. 2021, doi: 10.1021/ACS.CHEMRESTOX.0C00347/SUPPL_FILE/TX0C00347_SI_001.ZIP.
C. Schneider, A. Buchanan, B. Taddese, and C. M. Deane, “DLAB: deep learning methods for structure-based virtual screening of antibodies,” Bioinformatics, vol. 38, no. 2, pp. 377–383, Jan. 2022, doi: 10.1093/BIOINFORMATICS/BTAB660.
S. Pokhrel et al., “Spike protein recognizer receptor ACE2 targeted identification of potential natural antiviral drug candidates against SARS-CoV-2,” Int. J. Biol. Macromol., vol. 191, pp. 1114–1125, Nov. 2021, doi: 10.1016/J.IJBIOMAC.2021.09.146.
F. M. I. Hunter, A. P. Bento, N. Bosc, A. Gaulton, A. Hersey, and A. R. Leach, “Drug Safety Data Curation and Modeling in ChEMBL: Boxed Warnings and Withdrawn Drugs,” Chem. Res. Toxicol., vol. 34, no. 2, pp. 385–395, Feb. 2021, doi: 10.1021/ACS.CHEMRESTOX.0C00296/SUPPL_FILE/TX0C00296_SI_002.ZIP.
K. Nandhini and G. V Sriramakrishnan, “A Review of Drug Target Interaction Prognostication Using Artificial Intelligence,” Ann. Rom. Soc. Cell Biol., vol. 25, pp. 832–838, May 2021, Accessed: Jan. 24, 2022. [Online]. Available: https://www.annalsofrscb.ro/index.php/journal/article/view/4424.
M. D. M. Fernández-Arjona, J. M. Grondona, P. Fernández-Llebrez, and M. D. López-Ávalos, “Microglial activation by microbial neuraminidase through TLR2 and TLR4 receptors,” J. Neuroinflammation, vol. 16, no. 1, 2019, doi: 10.1186/s12974-019-1643-9.
A. Capecchi, M. Awale, D. Probst, and J. Reymond, “PubChem and ChEMBL beyond Lipinski,” Mol. Inform., vol. 38, no. 5, p. 1900016, May 2019, doi: 10.1002/minf.201900016.
Y. Hua, Y. Shi, X. Cui, and X. Li, “In silico prediction of chemical-induced hematotoxicity with machine learning and deep learning methods,” Mol. Divers., vol. 25, no. 3, pp. 1585–1596, Aug. 2021, doi: 10.1007/S11030-021-10255-X/TABLES/4.
T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, vol. 13-17-Augu, pp. 785–794, doi: 10.1145/2939672.2939785.
X. Su and M. Bai, “Stochastic gradient boosting frequency-severity model of insurance claims,” PLoS One, vol. 15, no. 8, p. e0238000, Aug. 2020, doi: 10.1371/JOURNAL.PONE.0238000.
S. Kabiraj et al., “Breast Cancer Risk Prediction using XGBoost and Random Forest Algorithm,” Jul. 2020, doi: 10.1109/ICCCNT49239.2020.9225451.
H. Kuswanto, R. Y. Nurhidayah, and H. Ohwada, “Comparison of Feature Selection Methods to Classify Inhibitors in DUD-E Database,” in Procedia Computer Science, Jan. 2018, vol. 144, pp. 194–202, doi: 10.1016/j.procs.2018.10.519.
S. Kim et al., “PubChem in 2021: new data content and improved web interfaces,” Nucleic Acids Res., vol. 49, no. D1, pp. D1388–D1395, Jan. 2021, doi: 10.1093/NAR/GKAA971.
A. Capecchi, D. Probst, and J. L. Reymond, “One molecular fingerprint to rule them all: Drugs, biomolecules, and the metabolome,” J. Cheminform., vol. 12, no. 1, pp. 1–15, Jun. 2020, doi: 10.1186/S13321-020-00445-4/FIGURES/8.
N. Hecker et al., “SuperTarget goes quantitative: Update on drug-target interactions,” Nucleic Acids Res., vol. 40, no. D1, Jan. 2012, doi: 10.1093/nar/gkr912.
T. Mancini, I. Melatti, and E. Tronci, “Any-horizon uniform random sampling and enumeration of constrained scenarios for simulation-based formal verification,” IEEE Trans. Softw. Eng., 2021, doi: 10.1109/TSE.2021.3109842.
A. Salazar, L. Vergara, and G. Safont, “Generative Adversarial Networks and Markov Random Fields for oversampling very small training sets,” Expert Syst. Appl., vol. 163, p. 113819, Jan. 2021, doi: 10.1016/J.ESWA.2020.113819.
Y. Peng and M. H. Nagata, “An empirical overview of nonlinearity and overfitting in machine learning using COVID-19 data,” Chaos, Solitons & Fractals, vol. 139, p. 110055, Oct. 2020, doi: 10.1016/J.CHAOS.2020.110055.
M. Rahman, Y. Cao, X. Sun, B. Li, and Y. Hao, “Deep pre-trained networks as a feature extractor with XGBoost to detect tuberculosis from chest X-ray,” Comput. Electr. Eng., vol. 93, p. 107252, Jul. 2021, doi: 10.1016/J.COMPELECENG.2021.107252.