Issue
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Hybrid Frequency and Period Based for Angular Speed Measurement of DC Motor Using Kalman Filter
Corresponding Author(s) : Novendra Setyawan
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 7, No. 2, May 2022
Abstract
The Incremental Rotary Encoder have been widely used to measure the angular speed of electrical drive such as Permanent Magnet Direct Current Motor (PMDCM). Nevertheless, speed measurement of PMDCM from the encoder signals can be subject to errors in some special condition such as in low resolution encoder. There are two main methods to measure the angular speed of PMDCM through encoder signal such as frequency-based and period-based wich has its own properties. Hence in this reseach aimed to improve the angular speed measurement with hybridization of frequency and period-based measurement. The Hybrid method is defined as paralleling the period and frequency then estimated the angular speed using sensor fusion with Kalman Filter. The experiment is doing by comparing of all method to get the best way in measuring. From the experimental showed that the Kalman filter parameter was fine tuned that resulting the sensor fusion or the mixed measurement between the frequency-based and the period based measure the angular speed accurately.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Engineering, I. Teknologi, and S. Nopember, “Adaptive Gaussian Parameter Particle Swarm Optimization And Its Implementation in Mobile Robot Path Planning,” pp. 238–243, 2017.
- N. A. Mardhiyah and N. Setyawan, “Pengenalan Posisi Multi Objek Menggunakan Neural Network dan Scan Lines Pada Robot Sepak Bola,” in Prosiding SENTRA (Seminar Teknologi dan Rekayasa), 2019, no. 5, pp. 58–64, doi: 10.22219/sentra.v0i4.2311.
- N. Setyawan, N. A. Mardiyah, and K. Hidayat, “Deteksi dan Prediksi Trajektori Objek Bergerak dengan Omni-Vision Menggunakan Pso-Nn dan Interpolasi Polynomial,” Multitek Indones., vol. 13, no. 1, pp. 66–80, 2019.
- N. Setyawan, N. Mardiyah, K. Hidayat, and Z. Has, “Object detection of omnidirectional vision using PSO-neural network for soccer robot,” in 2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2018, pp. 117–121, doi: 10.1109/EECSI.2018.8752833.
- D. Somwanshi, M. Bundele, G. Kumar, and G. Parashar, “Comparison of fuzzy-PID and PID controller for speed control of DC motor using LabVIEW,” Procedia Comput. Sci., vol. 152, pp. 252–260, 2019.
- E. H. Putra, Z. Has, and M. Effendy, “Robust Adaptive Sliding Mode Control Design with Genetic Algorithm for Brushless DC Motor,” Proceeding Electr. Eng. Comput. Sci. Informatics, vol. 5, no. 5, pp. 330–335, 2018.
- N. Setyawan, N. A. Mardiyah, M. N. Achmadiah, R. Effendi, and A. Jazidie, “Active fault tolerant control for missing measurement problem in a Quarter car model with linear matrix inequality approach,” 2017 Int. Electron. Symp. Eng. Technol. Appl., no. 1, pp. 207–211, 2017, doi: 10.1109/ELECSYM.2017.8240404.
- Z. Zulfatman and M. F. Rahmat, “Application of self-tuning fuzzy PID controller on industrial hydraulic actuator using system identification approach,” Int. J. Smart Sens. Intell. Syst., vol. 2, no. 2, pp. 246–261, 2009.
- G. W. Kurniawan, N. Setyawan, and E. A. Hakim, “PID Trajectory Tracking Control 4 Omni-Wheel Robot,” SinarFe7, vol. 2, no. 1, pp. 345–350, 2019.
- Z. Tir, O. Malik, M. A. Hamida, H. Cherif, Y. Bekakra, and A. Kadrine, “Implementation of a fuzzy logic speed controller for a permanent magnet dc motor using a low-cost Arduino platform,” 2017 5th Int. Conf. Electr. Eng. - Boumerdes, ICEE-B 2017, vol. 2017-Janua, pp. 1–4, 2017, doi: 10.1109/ICEE-B.2017.8192218.
- M. Zhao and J. Lin, “Health assessment of rotating machinery using a rotary encoder,” IEEE Trans. Ind. Electron., vol. 65, no. 3, pp. 2548–2556, 2017.
- A. F. Ilmiawan, D. Wijanarko, A. H. Arofat, H. Hindersyah, and A. Purwadi, “An easy speed measurement for incremental rotary encoder using multi stage moving average method,” in 2014 International Conference on Electrical Engineering and Computer Science (ICEECS), 2014, pp. 363–368.
- F. Brugnano, C. Concari, E. Imamovic, F. Savi, A. Toscani, and R. Zanichelli, “A simple and accurate algorithm for speed measurement in electric drives using incremental encoder,” Proc. IECON 2017 - 43rd Annu. Conf. IEEE Ind. Electron. Soc., vol. 2017-Janua, pp. 8551–8556, 2017, doi: 10.1109/IECON.2017.8217502.
- A. C. Negrea, M. Imecs, I. lov Incze, A. Pop, and C. Szabo, “Error compensation methods in speed identification using incremental encoder,” in 2012 international conference and exposition on electrical and power engineering, 2012, pp. 441–445.
- G. G. Rigatos, “Particle and Kalman filtering for state estimation and control of DC motors,” ISA Trans., vol. 48, no. 1, pp. 62–72, 2009.
- S. Praesomboon, S. Athaphaisal, S. Yimman, R. Boontawan, and K. Dejhan, “Sensorless speed control of DC servo motor using Kalman filter,” in 2009 7th International Conference on Information, Communications and Signal Processing (ICICS), 2009, pp. 1–5.
- V. Aishwarya and B. Jayanand, “Estimation and control of sensorless brushless dc motor drive using extended kalman filter,” in 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), 2016, pp. 1–7.
- K. S. Gaeid, “Optimal gain Kalman filter design with Dc motor speed controlled parameters,” J. Asian Sci. Res., vol. 3, no. 12, pp. 1157–1172, 2013.
- D. Lenine, B. R. Reddy, and S. V. Kumar, “Estimation of speed and rotor position of BLDC motor using extended Kalman filter,” 2007.
- A. Khalid and A. Nawaz, “Sensor less control of DC motor using Kalman filter for low cost CNC machine,” in 2014 International Conference on Robotics and Emerging Allied Technologies in Engineering (iCREATE), 2014, pp. 180–185.
- Z. Aydogmus and O. Aydogmus, “A comparison of artificial neural network and extended Kalman filter based sensorless speed estimation,” Measurement, vol. 63, pp. 152–158, 2015.
- P. Deshpande and A. Deshpande, “Inferential control of DC motor using Kalman Filter,” in 2012 2nd International Conference on Power, Control and Embedded Systems, 2012, pp. 1–5.
- N. Hagiwara, Y. Suzuki, and H. Murase, “A method of improving the resolution and accuracy of rotary encoders using a code compensation technique,” IEEE Trans. Instrum. Meas., vol. 41, no. 1, pp. 98–101, 1992.
- D. Zheng, S. Zhang, S. Wang, C. Hu, and X. Zhao, “A capacitive rotary encoder based on quadrature modulation and demodulation,” IEEE Trans. Instrum. Meas., vol. 64, no. 1, pp. 143–153, 2014.
- R. Petrella, M. Tursini, L. Peretti, and M. Zigliotto, “Speed measurement algorithms for low-resolution incremental encoder equipped drives: A comparative analysis,” Int. Aegean Conf. Electr. Mach. Power Electron. Electromotion ACEMP’07 Electromotion’07 Jt. Conf., pp. 780–787, 2007, doi: 10.1109/ACEMP.2007.4510607.
References
E. Engineering, I. Teknologi, and S. Nopember, “Adaptive Gaussian Parameter Particle Swarm Optimization And Its Implementation in Mobile Robot Path Planning,” pp. 238–243, 2017.
N. A. Mardhiyah and N. Setyawan, “Pengenalan Posisi Multi Objek Menggunakan Neural Network dan Scan Lines Pada Robot Sepak Bola,” in Prosiding SENTRA (Seminar Teknologi dan Rekayasa), 2019, no. 5, pp. 58–64, doi: 10.22219/sentra.v0i4.2311.
N. Setyawan, N. A. Mardiyah, and K. Hidayat, “Deteksi dan Prediksi Trajektori Objek Bergerak dengan Omni-Vision Menggunakan Pso-Nn dan Interpolasi Polynomial,” Multitek Indones., vol. 13, no. 1, pp. 66–80, 2019.
N. Setyawan, N. Mardiyah, K. Hidayat, and Z. Has, “Object detection of omnidirectional vision using PSO-neural network for soccer robot,” in 2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2018, pp. 117–121, doi: 10.1109/EECSI.2018.8752833.
D. Somwanshi, M. Bundele, G. Kumar, and G. Parashar, “Comparison of fuzzy-PID and PID controller for speed control of DC motor using LabVIEW,” Procedia Comput. Sci., vol. 152, pp. 252–260, 2019.
E. H. Putra, Z. Has, and M. Effendy, “Robust Adaptive Sliding Mode Control Design with Genetic Algorithm for Brushless DC Motor,” Proceeding Electr. Eng. Comput. Sci. Informatics, vol. 5, no. 5, pp. 330–335, 2018.
N. Setyawan, N. A. Mardiyah, M. N. Achmadiah, R. Effendi, and A. Jazidie, “Active fault tolerant control for missing measurement problem in a Quarter car model with linear matrix inequality approach,” 2017 Int. Electron. Symp. Eng. Technol. Appl., no. 1, pp. 207–211, 2017, doi: 10.1109/ELECSYM.2017.8240404.
Z. Zulfatman and M. F. Rahmat, “Application of self-tuning fuzzy PID controller on industrial hydraulic actuator using system identification approach,” Int. J. Smart Sens. Intell. Syst., vol. 2, no. 2, pp. 246–261, 2009.
G. W. Kurniawan, N. Setyawan, and E. A. Hakim, “PID Trajectory Tracking Control 4 Omni-Wheel Robot,” SinarFe7, vol. 2, no. 1, pp. 345–350, 2019.
Z. Tir, O. Malik, M. A. Hamida, H. Cherif, Y. Bekakra, and A. Kadrine, “Implementation of a fuzzy logic speed controller for a permanent magnet dc motor using a low-cost Arduino platform,” 2017 5th Int. Conf. Electr. Eng. - Boumerdes, ICEE-B 2017, vol. 2017-Janua, pp. 1–4, 2017, doi: 10.1109/ICEE-B.2017.8192218.
M. Zhao and J. Lin, “Health assessment of rotating machinery using a rotary encoder,” IEEE Trans. Ind. Electron., vol. 65, no. 3, pp. 2548–2556, 2017.
A. F. Ilmiawan, D. Wijanarko, A. H. Arofat, H. Hindersyah, and A. Purwadi, “An easy speed measurement for incremental rotary encoder using multi stage moving average method,” in 2014 International Conference on Electrical Engineering and Computer Science (ICEECS), 2014, pp. 363–368.
F. Brugnano, C. Concari, E. Imamovic, F. Savi, A. Toscani, and R. Zanichelli, “A simple and accurate algorithm for speed measurement in electric drives using incremental encoder,” Proc. IECON 2017 - 43rd Annu. Conf. IEEE Ind. Electron. Soc., vol. 2017-Janua, pp. 8551–8556, 2017, doi: 10.1109/IECON.2017.8217502.
A. C. Negrea, M. Imecs, I. lov Incze, A. Pop, and C. Szabo, “Error compensation methods in speed identification using incremental encoder,” in 2012 international conference and exposition on electrical and power engineering, 2012, pp. 441–445.
G. G. Rigatos, “Particle and Kalman filtering for state estimation and control of DC motors,” ISA Trans., vol. 48, no. 1, pp. 62–72, 2009.
S. Praesomboon, S. Athaphaisal, S. Yimman, R. Boontawan, and K. Dejhan, “Sensorless speed control of DC servo motor using Kalman filter,” in 2009 7th International Conference on Information, Communications and Signal Processing (ICICS), 2009, pp. 1–5.
V. Aishwarya and B. Jayanand, “Estimation and control of sensorless brushless dc motor drive using extended kalman filter,” in 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), 2016, pp. 1–7.
K. S. Gaeid, “Optimal gain Kalman filter design with Dc motor speed controlled parameters,” J. Asian Sci. Res., vol. 3, no. 12, pp. 1157–1172, 2013.
D. Lenine, B. R. Reddy, and S. V. Kumar, “Estimation of speed and rotor position of BLDC motor using extended Kalman filter,” 2007.
A. Khalid and A. Nawaz, “Sensor less control of DC motor using Kalman filter for low cost CNC machine,” in 2014 International Conference on Robotics and Emerging Allied Technologies in Engineering (iCREATE), 2014, pp. 180–185.
Z. Aydogmus and O. Aydogmus, “A comparison of artificial neural network and extended Kalman filter based sensorless speed estimation,” Measurement, vol. 63, pp. 152–158, 2015.
P. Deshpande and A. Deshpande, “Inferential control of DC motor using Kalman Filter,” in 2012 2nd International Conference on Power, Control and Embedded Systems, 2012, pp. 1–5.
N. Hagiwara, Y. Suzuki, and H. Murase, “A method of improving the resolution and accuracy of rotary encoders using a code compensation technique,” IEEE Trans. Instrum. Meas., vol. 41, no. 1, pp. 98–101, 1992.
D. Zheng, S. Zhang, S. Wang, C. Hu, and X. Zhao, “A capacitive rotary encoder based on quadrature modulation and demodulation,” IEEE Trans. Instrum. Meas., vol. 64, no. 1, pp. 143–153, 2014.
R. Petrella, M. Tursini, L. Peretti, and M. Zigliotto, “Speed measurement algorithms for low-resolution incremental encoder equipped drives: A comparative analysis,” Int. Aegean Conf. Electr. Mach. Power Electron. Electromotion ACEMP’07 Electromotion’07 Jt. Conf., pp. 780–787, 2007, doi: 10.1109/ACEMP.2007.4510607.