Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 7, No. 2, May 2022
  4. Articles

Issue

Vol. 7, No. 2, May 2022

Issue Published : May 31, 2022
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Hybrid Frequency and Period Based for Angular Speed Measurement of DC Motor Using Kalman Filter

https://doi.org/10.22219/kinetik.v7i2.1420
Novendra Setyawan
Universitas Muhammadiyah Malang
Basri Noor Cahyadi
Universitas Muhammadiyah Malang
Ermanu Azizul Hakim
Universitas Muhammadiyah Malang
Mas Nurul Achmadiah
Politeknik Negeri Malang

Corresponding Author(s) : Novendra Setyawan

novendra@umm.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 7, No. 2, May 2022
Article Published : May 31, 2022

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract


The Incremental Rotary Encoder have been widely used to measure the angular speed of electrical drive such as Permanent Magnet Direct Current Motor (PMDCM). Nevertheless, speed measurement of PMDCM from the encoder signals can be subject to errors in some special condition such as in low resolution encoder. There are two main methods to measure the angular speed of PMDCM through encoder signal such as frequency-based and period-based wich has its own properties. Hence in this reseach aimed to improve the angular speed measurement with hybridization of frequency and period-based measurement. The Hybrid method is defined as paralleling the period and frequency then estimated the angular speed using sensor fusion with Kalman Filter. The experiment is doing by comparing of all method to get the best way in measuring. From the experimental showed that the Kalman filter parameter was fine tuned that resulting the sensor fusion or the mixed measurement between the frequency-based and the period based measure the angular speed accurately.


Keywords

Permanen Magnet DC Motor Period-Based Frequency-Based Rotary Encoder Kalman Filter
Setyawan, N., Cahyadi, B. N., Hakim, E. A., & Achmadiah, M. N. (2022). Hybrid Frequency and Period Based for Angular Speed Measurement of DC Motor Using Kalman Filter . Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 7(2). https://doi.org/10.22219/kinetik.v7i2.1420
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. E. Engineering, I. Teknologi, and S. Nopember, “Adaptive Gaussian Parameter Particle Swarm Optimization And Its Implementation in Mobile Robot Path Planning,” pp. 238–243, 2017.
  2. N. A. Mardhiyah and N. Setyawan, “Pengenalan Posisi Multi Objek Menggunakan Neural Network dan Scan Lines Pada Robot Sepak Bola,” in Prosiding SENTRA (Seminar Teknologi dan Rekayasa), 2019, no. 5, pp. 58–64, doi: 10.22219/sentra.v0i4.2311.
  3. N. Setyawan, N. A. Mardiyah, and K. Hidayat, “Deteksi dan Prediksi Trajektori Objek Bergerak dengan Omni-Vision Menggunakan Pso-Nn dan Interpolasi Polynomial,” Multitek Indones., vol. 13, no. 1, pp. 66–80, 2019.
  4. N. Setyawan, N. Mardiyah, K. Hidayat, and Z. Has, “Object detection of omnidirectional vision using PSO-neural network for soccer robot,” in 2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2018, pp. 117–121, doi: 10.1109/EECSI.2018.8752833.
  5. D. Somwanshi, M. Bundele, G. Kumar, and G. Parashar, “Comparison of fuzzy-PID and PID controller for speed control of DC motor using LabVIEW,” Procedia Comput. Sci., vol. 152, pp. 252–260, 2019.
  6. E. H. Putra, Z. Has, and M. Effendy, “Robust Adaptive Sliding Mode Control Design with Genetic Algorithm for Brushless DC Motor,” Proceeding Electr. Eng. Comput. Sci. Informatics, vol. 5, no. 5, pp. 330–335, 2018.
  7. N. Setyawan, N. A. Mardiyah, M. N. Achmadiah, R. Effendi, and A. Jazidie, “Active fault tolerant control for missing measurement problem in a Quarter car model with linear matrix inequality approach,” 2017 Int. Electron. Symp. Eng. Technol. Appl., no. 1, pp. 207–211, 2017, doi: 10.1109/ELECSYM.2017.8240404.
  8. Z. Zulfatman and M. F. Rahmat, “Application of self-tuning fuzzy PID controller on industrial hydraulic actuator using system identification approach,” Int. J. Smart Sens. Intell. Syst., vol. 2, no. 2, pp. 246–261, 2009.
  9. G. W. Kurniawan, N. Setyawan, and E. A. Hakim, “PID Trajectory Tracking Control 4 Omni-Wheel Robot,” SinarFe7, vol. 2, no. 1, pp. 345–350, 2019.
  10. Z. Tir, O. Malik, M. A. Hamida, H. Cherif, Y. Bekakra, and A. Kadrine, “Implementation of a fuzzy logic speed controller for a permanent magnet dc motor using a low-cost Arduino platform,” 2017 5th Int. Conf. Electr. Eng. - Boumerdes, ICEE-B 2017, vol. 2017-Janua, pp. 1–4, 2017, doi: 10.1109/ICEE-B.2017.8192218.
  11. M. Zhao and J. Lin, “Health assessment of rotating machinery using a rotary encoder,” IEEE Trans. Ind. Electron., vol. 65, no. 3, pp. 2548–2556, 2017.
  12. A. F. Ilmiawan, D. Wijanarko, A. H. Arofat, H. Hindersyah, and A. Purwadi, “An easy speed measurement for incremental rotary encoder using multi stage moving average method,” in 2014 International Conference on Electrical Engineering and Computer Science (ICEECS), 2014, pp. 363–368.
  13. F. Brugnano, C. Concari, E. Imamovic, F. Savi, A. Toscani, and R. Zanichelli, “A simple and accurate algorithm for speed measurement in electric drives using incremental encoder,” Proc. IECON 2017 - 43rd Annu. Conf. IEEE Ind. Electron. Soc., vol. 2017-Janua, pp. 8551–8556, 2017, doi: 10.1109/IECON.2017.8217502.
  14. A. C. Negrea, M. Imecs, I. lov Incze, A. Pop, and C. Szabo, “Error compensation methods in speed identification using incremental encoder,” in 2012 international conference and exposition on electrical and power engineering, 2012, pp. 441–445.
  15. G. G. Rigatos, “Particle and Kalman filtering for state estimation and control of DC motors,” ISA Trans., vol. 48, no. 1, pp. 62–72, 2009.
  16. S. Praesomboon, S. Athaphaisal, S. Yimman, R. Boontawan, and K. Dejhan, “Sensorless speed control of DC servo motor using Kalman filter,” in 2009 7th International Conference on Information, Communications and Signal Processing (ICICS), 2009, pp. 1–5.
  17. V. Aishwarya and B. Jayanand, “Estimation and control of sensorless brushless dc motor drive using extended kalman filter,” in 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), 2016, pp. 1–7.
  18. K. S. Gaeid, “Optimal gain Kalman filter design with Dc motor speed controlled parameters,” J. Asian Sci. Res., vol. 3, no. 12, pp. 1157–1172, 2013.
  19. D. Lenine, B. R. Reddy, and S. V. Kumar, “Estimation of speed and rotor position of BLDC motor using extended Kalman filter,” 2007.
  20. A. Khalid and A. Nawaz, “Sensor less control of DC motor using Kalman filter for low cost CNC machine,” in 2014 International Conference on Robotics and Emerging Allied Technologies in Engineering (iCREATE), 2014, pp. 180–185.
  21. Z. Aydogmus and O. Aydogmus, “A comparison of artificial neural network and extended Kalman filter based sensorless speed estimation,” Measurement, vol. 63, pp. 152–158, 2015.
  22. P. Deshpande and A. Deshpande, “Inferential control of DC motor using Kalman Filter,” in 2012 2nd International Conference on Power, Control and Embedded Systems, 2012, pp. 1–5.
  23. N. Hagiwara, Y. Suzuki, and H. Murase, “A method of improving the resolution and accuracy of rotary encoders using a code compensation technique,” IEEE Trans. Instrum. Meas., vol. 41, no. 1, pp. 98–101, 1992.
  24. D. Zheng, S. Zhang, S. Wang, C. Hu, and X. Zhao, “A capacitive rotary encoder based on quadrature modulation and demodulation,” IEEE Trans. Instrum. Meas., vol. 64, no. 1, pp. 143–153, 2014.
  25. R. Petrella, M. Tursini, L. Peretti, and M. Zigliotto, “Speed measurement algorithms for low-resolution incremental encoder equipped drives: A comparative analysis,” Int. Aegean Conf. Electr. Mach. Power Electron. Electromotion ACEMP’07 Electromotion’07 Jt. Conf., pp. 780–787, 2007, doi: 10.1109/ACEMP.2007.4510607.
Read More

References


E. Engineering, I. Teknologi, and S. Nopember, “Adaptive Gaussian Parameter Particle Swarm Optimization And Its Implementation in Mobile Robot Path Planning,” pp. 238–243, 2017.

N. A. Mardhiyah and N. Setyawan, “Pengenalan Posisi Multi Objek Menggunakan Neural Network dan Scan Lines Pada Robot Sepak Bola,” in Prosiding SENTRA (Seminar Teknologi dan Rekayasa), 2019, no. 5, pp. 58–64, doi: 10.22219/sentra.v0i4.2311.

N. Setyawan, N. A. Mardiyah, and K. Hidayat, “Deteksi dan Prediksi Trajektori Objek Bergerak dengan Omni-Vision Menggunakan Pso-Nn dan Interpolasi Polynomial,” Multitek Indones., vol. 13, no. 1, pp. 66–80, 2019.

N. Setyawan, N. Mardiyah, K. Hidayat, and Z. Has, “Object detection of omnidirectional vision using PSO-neural network for soccer robot,” in 2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2018, pp. 117–121, doi: 10.1109/EECSI.2018.8752833.

D. Somwanshi, M. Bundele, G. Kumar, and G. Parashar, “Comparison of fuzzy-PID and PID controller for speed control of DC motor using LabVIEW,” Procedia Comput. Sci., vol. 152, pp. 252–260, 2019.

E. H. Putra, Z. Has, and M. Effendy, “Robust Adaptive Sliding Mode Control Design with Genetic Algorithm for Brushless DC Motor,” Proceeding Electr. Eng. Comput. Sci. Informatics, vol. 5, no. 5, pp. 330–335, 2018.

N. Setyawan, N. A. Mardiyah, M. N. Achmadiah, R. Effendi, and A. Jazidie, “Active fault tolerant control for missing measurement problem in a Quarter car model with linear matrix inequality approach,” 2017 Int. Electron. Symp. Eng. Technol. Appl., no. 1, pp. 207–211, 2017, doi: 10.1109/ELECSYM.2017.8240404.

Z. Zulfatman and M. F. Rahmat, “Application of self-tuning fuzzy PID controller on industrial hydraulic actuator using system identification approach,” Int. J. Smart Sens. Intell. Syst., vol. 2, no. 2, pp. 246–261, 2009.

G. W. Kurniawan, N. Setyawan, and E. A. Hakim, “PID Trajectory Tracking Control 4 Omni-Wheel Robot,” SinarFe7, vol. 2, no. 1, pp. 345–350, 2019.

Z. Tir, O. Malik, M. A. Hamida, H. Cherif, Y. Bekakra, and A. Kadrine, “Implementation of a fuzzy logic speed controller for a permanent magnet dc motor using a low-cost Arduino platform,” 2017 5th Int. Conf. Electr. Eng. - Boumerdes, ICEE-B 2017, vol. 2017-Janua, pp. 1–4, 2017, doi: 10.1109/ICEE-B.2017.8192218.

M. Zhao and J. Lin, “Health assessment of rotating machinery using a rotary encoder,” IEEE Trans. Ind. Electron., vol. 65, no. 3, pp. 2548–2556, 2017.

A. F. Ilmiawan, D. Wijanarko, A. H. Arofat, H. Hindersyah, and A. Purwadi, “An easy speed measurement for incremental rotary encoder using multi stage moving average method,” in 2014 International Conference on Electrical Engineering and Computer Science (ICEECS), 2014, pp. 363–368.

F. Brugnano, C. Concari, E. Imamovic, F. Savi, A. Toscani, and R. Zanichelli, “A simple and accurate algorithm for speed measurement in electric drives using incremental encoder,” Proc. IECON 2017 - 43rd Annu. Conf. IEEE Ind. Electron. Soc., vol. 2017-Janua, pp. 8551–8556, 2017, doi: 10.1109/IECON.2017.8217502.

A. C. Negrea, M. Imecs, I. lov Incze, A. Pop, and C. Szabo, “Error compensation methods in speed identification using incremental encoder,” in 2012 international conference and exposition on electrical and power engineering, 2012, pp. 441–445.

G. G. Rigatos, “Particle and Kalman filtering for state estimation and control of DC motors,” ISA Trans., vol. 48, no. 1, pp. 62–72, 2009.

S. Praesomboon, S. Athaphaisal, S. Yimman, R. Boontawan, and K. Dejhan, “Sensorless speed control of DC servo motor using Kalman filter,” in 2009 7th International Conference on Information, Communications and Signal Processing (ICICS), 2009, pp. 1–5.

V. Aishwarya and B. Jayanand, “Estimation and control of sensorless brushless dc motor drive using extended kalman filter,” in 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), 2016, pp. 1–7.

K. S. Gaeid, “Optimal gain Kalman filter design with Dc motor speed controlled parameters,” J. Asian Sci. Res., vol. 3, no. 12, pp. 1157–1172, 2013.

D. Lenine, B. R. Reddy, and S. V. Kumar, “Estimation of speed and rotor position of BLDC motor using extended Kalman filter,” 2007.

A. Khalid and A. Nawaz, “Sensor less control of DC motor using Kalman filter for low cost CNC machine,” in 2014 International Conference on Robotics and Emerging Allied Technologies in Engineering (iCREATE), 2014, pp. 180–185.

Z. Aydogmus and O. Aydogmus, “A comparison of artificial neural network and extended Kalman filter based sensorless speed estimation,” Measurement, vol. 63, pp. 152–158, 2015.

P. Deshpande and A. Deshpande, “Inferential control of DC motor using Kalman Filter,” in 2012 2nd International Conference on Power, Control and Embedded Systems, 2012, pp. 1–5.

N. Hagiwara, Y. Suzuki, and H. Murase, “A method of improving the resolution and accuracy of rotary encoders using a code compensation technique,” IEEE Trans. Instrum. Meas., vol. 41, no. 1, pp. 98–101, 1992.

D. Zheng, S. Zhang, S. Wang, C. Hu, and X. Zhao, “A capacitive rotary encoder based on quadrature modulation and demodulation,” IEEE Trans. Instrum. Meas., vol. 64, no. 1, pp. 143–153, 2014.

R. Petrella, M. Tursini, L. Peretti, and M. Zigliotto, “Speed measurement algorithms for low-resolution incremental encoder equipped drives: A comparative analysis,” Int. Aegean Conf. Electr. Mach. Power Electron. Electromotion ACEMP’07 Electromotion’07 Jt. Conf., pp. 780–787, 2007, doi: 10.1109/ACEMP.2007.4510607.

Author Biography

Novendra Setyawan, Universitas Muhammadiyah Malang

Scopus Profil

https://www.scopus.com/authid/detail.uri?authorId=57201151057

Google Scholar Profil

https://scholar.google.com/citations?user=c00Bi8AAAAAJ&hl=en

Download this PDF file
PDF
Statistic
Read Counter : 37 Download : 10

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License