Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 7, No. 1, February 2022
  4. Articles

Issue

Vol. 7, No. 1, February 2022

Issue Published : Feb 28, 2022
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

EAM-LoRaNet: Energy Aware Multi-hop LoRa Network for Internet of Things

https://doi.org/10.22219/kinetik.v7i1.1391
Misbahuddin Misbahuddin
Universitas Mataram
Muhammad Syamsu Iqbal
University of Mataram
Djul Fikry Budiman
University of Mataram
Giri Wahyu Wiriasto
University of Mataram
Lalu Ahmad Syamsul Irfan Akbar

Corresponding Author(s) : Misbahuddin Misbahuddin

misbahuddin@unram.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 7, No. 1, February 2022
Article Published : Feb 28, 2022

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

LoRa Technology is one of the devices used on Low-Power Wide Area Networks (LPWAN), which is a viable alternative wireless communication technology for the Internet of Things (IoT). The LoRa device is meant to traverse a large distance while using minimal power. However, because it uses single-hop communication, the Gateway's farthest nodes will die prematurely as a result of the increased energy usage. This research attempts to improve the range of LoRa networks utilizing multi-hop uplink communication while also reducing energy consumption by adjusting the LoRa transmission power to the lowest possible dBm in each hop. As a network model, a star topology-based tree made of some rings with a gateway as the central point is chosen. The performance of two forms of uplink communication, single-hop and multi-hop models was tested in terms of energy consumption and coverage. The results show that the network structure in the multi-hop uplink model can extend coverage over a greater distance while using less energy than the single-hop uplink model. This model can be used as a supplement to the LPWAN's uplink communication in the IoT to enhance the network's coverage range and lifetime.

Keywords

Internet of Things LPWAN Energy Aware Multi-Hop LoRa Network Lifetime
Misbahuddin, M., Iqbal, M. S. ., Budiman, D. F., Wiriasto, G. W. ., & Akbar, L. A. S. I. (2022). EAM-LoRaNet: Energy Aware Multi-hop LoRa Network for Internet of Things. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 7(1), 81-90. https://doi.org/10.22219/kinetik.v7i1.1391
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. C. Kuhlins, B. Rathonyi, A. Zaidi, and M. Hogan, “Cellular Networks for Massive IoT, Ericsson White paper,” 2020.
  2. A. J. Jara, A. F. Alcolea, M. A. Zamora, and A. F. G. Skarmeta, “Analysis of different techniques to define metadata structure in NFC/RFID cards to reduce access latency, optimize capacity, and guarantee integrity,” IFAC Proc. Vol., vol. 43, no. 4, pp. 192–197, 2010. https://doi.org/10.3182/20100701-2-PT-4011.00034
  3. E. Park, M.-S. Lee, H.-S. Kim, and S. Bahk, “AdaptaBLE: Adaptive control of data rate, transmission power, and connection interval in bluetooth low energy,” Comput. Networks, vol. 181, p. 107520, 2020. https://doi.org/10.1016/j.comnet.2020.107520
  4. T. Benmansour, T. Ahmed, S. Moussaoui, and Z. Doukha, “Performance analyses of the IEEE 802.15.6 Wireless Body Area Network with heterogeneous traffic,” J. Netw. Comput. Appl., vol. 163, p. 102651, 2020. https://doi.org/10.1016/j.jnca.2020.102651
  5. L. Tian, S. Santi, A. Seferagić, J. Lan, and J. Famaey, “Wi-Fi HaLow for the Internet of Things: An up-to-date survey on IEEE 802.11ah research,” J. Netw. Comput. Appl., vol. 182, p. 103036, 2021. https://doi.org/10.1016/j.jnca.2021.103036
  6. X. Chen, Y. Xiao, Y. Cai, J. Lu, and Z. Zhou, “An energy diffserv and application-aware MAC scheduling for VBR streaming video in the IEEE 802.15.3 high-rate wireless personal area networks,” Comput. Commun., vol. 29, no. 17, pp. 3516–3526, 2006. https://doi.org/10.1016/j.comcom.2006.01.020
  7. Ompal, V. M. Mishra, and A. Kumar, “FPGA Integrated IEEE 802.15.4 ZigBee Wireless Sensor Nodes Performance for Industrial Plant Monitoring and Automation,” Nucl. Eng. Technol., 2022. https://doi.org/10.1016/j.net.2022.01.011
  8. G. Knieps and J. M. Bauer, “Internet of things and the economics of 5G-based local industrial networks,” Telecomm. Policy, p. 102261, 2021. https://doi.org/10.1016/j.telpol.2021.102261
  9. D. Zorbas, K. Abdelfadeel, P. Kotzanikolaou, and D. Pesch, “TS-LoRa: Time-slotted LoRaWAN for the Industrial Internet of Things,” Comput. Commun., vol. 153, pp. 1–10, 2020. https://doi.org/10.1016/j.comcom.2020.01.056
  10. R. Islam, M. W. Rahman, R. Rubaiat, M. M. Hasan, M. M. Reza, and M. M. Rahman, “LoRa and server-based home automation using the internet of things (IoT),” J. King Saud Univ. - Comput. Inf. Sci., 2021. https://doi.org/10.1016/j.jksuci.2020.12.020
  11. P. Boccadoro, V. Daniele, P. Di Gennaro, D. Lofù, and P. Tedeschi, “Water quality prediction on a Sigfox-compliant IoT device: The road ahead of WaterS,” Ad Hoc Networks, vol. 126, p. 102749, 2022. https://doi.org/10.1016/j.adhoc.2021.102749
  12. R. K. Jha, Puja, H. Kour, M. Kumar, and S. Jain, “Layer based security in Narrow Band Internet of Things (NB-IoT),” Comput. Networks, vol. 185, p. 107592, 2021. https://doi.org/10.1016/j.comnet.2020.107592
  13. W. Ayoub, A. E. Samhat, F. Nouvel, M. Mroue, H. Jradi, and J.-C. Prévotet, “Media independent solution for mobility management in heterogeneous LPWAN technologies,” Comput. Networks, vol. 182, p. 107423, 2020. https://doi.org/10.1016/j.comnet.2020.107423
  14. S. Farrell, Low-Power Wide Area Network (LPWAN) Overview. Internet Engineering Task Force (IETF), 2018.
  15. M. E. Yuksel and H. Fidan, “Energy-aware system design for batteryless LPWAN devices in IoT applications,” Ad Hoc Networks, vol. 122, p. 102625, 2021. https://doi.org/10.1016/j.adhoc.2021.102625
  16. M. Bor, J. E. Vidler, and U. Roedig, “LoRa for the Internet of Things,” in International Conference on Embedded Wireless Systems and Networks (EWSN) 2016, 2016, pp. 361–366.
  17. C.-H. Liao, G. Zhu, D. Kuwabara, M. Suzuki, and H. Morikawa, “Multi-Hop LoRa Networks Enabled by Concurrent Transmission,” IEEE Access, vol. 5, pp. 21430–21446, 2017. https://doi.org/10.1109/ACCESS.2017.2755858
  18. H.-C. Lee and K.-H. Ke, “Monitoring of Large-Area IoT Sensors Using a LoRa Wireless Mesh Network System: Design and Evaluation,” IEEE Trans. Instrum. Meas., vol. 67, no. 9, pp. 2177–2187, 2018. https://doi.org/10.1109/TIM.2018.2814082
  19. D. Lundell, A. Hedberg, C. Nyberg, and E. Fitzgerald, “A Routing Protocol for LoRA Mesh Networks,” in 19th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM 2018, 2018. https://doi.org/10.1109/WoWMoM.2018.8449743
  20. J. Dias and A. Grilo, “Multi-hop LoRaWAN uplink extension: specification and prototype implementation,” J. Ambient Intell. Humaniz. Comput., vol. 11, no. 3, pp. 945–959, 2020. https://doi.org/10.1007/s12652-019-01207-3
  21. A. Abrardo and A. Pozzebon, “A multi-hop lora linear sensor network for the monitoring of underground environments: The case of the medieval aqueducts in Siena, Italy,” Sensors (Switzerland), vol. 19, no. 2, 2019. https://doi.org/10.3390/s19020402
  22. C. T. Duong and M. K. Kim, “Reliable multi-hop linear network based on LoRa,” Int. J. Control Autom, vol. 11, pp. 143–154, 2018. https://doi.org/10.14257/ijca.2018.11.4.13
  23. G. Zhu, C.-H. Liao, T. Sakdejayont, I.-W. Lai, Y. Narusue, and H. Morikawa, “Improving the Capacity of a Mesh LoRa Network by Spreading-Factor-Based Network Clustering,” IEEE Access, vol. 7, pp. 21584–21596, 2019. https://doi.org/10.1109/ACCESS.2019.2898239
  24. D. L. Mai and M. K. Kim, “Multi-hop lora network with pipelined transmission capability,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12293, pp. 125–135, 2020. https://doi.org/10.1007/978-3-030-58008-7_10
  25. D. L. Mai and M. K. Kim, “Multi-hop LoRa network protocol with minimized latency,” Energies, vol. 16, no. 3, 2020. https://doi.org/10.3390/en13061368
  26. C. Ebi, F. Schaltegger, A. Rust, and F. Blumensaat, “Synchronous LoRa Mesh Network to Monitor Processes in Underground Infrastructure,” IEEE Access, vol. 7, pp. 57663–57677, 2019. https://doi.org/10.1109/ACCESS.2019.2913985
  27. 3GPP, "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) system scenarios (Release 13),” 36.942, 2016.
  28. S. Barrachina-Muñoz, B. Bellalta, T. Adame, and A. Bel, “Multi-hop communication in the uplink for LPWANs,” Comput. Networks, vol. 123, pp. 153–168, Aug. 2017. https://doi.org/10.1016/J.COMNET.2017.05.020
  29. S. Corporation, “SX1276/77/78/79 - 137 MHz to 1020 MHz Low Power Long Range Transceiver,” 2019.
Read More

References


C. Kuhlins, B. Rathonyi, A. Zaidi, and M. Hogan, “Cellular Networks for Massive IoT, Ericsson White paper,” 2020.

A. J. Jara, A. F. Alcolea, M. A. Zamora, and A. F. G. Skarmeta, “Analysis of different techniques to define metadata structure in NFC/RFID cards to reduce access latency, optimize capacity, and guarantee integrity,” IFAC Proc. Vol., vol. 43, no. 4, pp. 192–197, 2010. https://doi.org/10.3182/20100701-2-PT-4011.00034

E. Park, M.-S. Lee, H.-S. Kim, and S. Bahk, “AdaptaBLE: Adaptive control of data rate, transmission power, and connection interval in bluetooth low energy,” Comput. Networks, vol. 181, p. 107520, 2020. https://doi.org/10.1016/j.comnet.2020.107520

T. Benmansour, T. Ahmed, S. Moussaoui, and Z. Doukha, “Performance analyses of the IEEE 802.15.6 Wireless Body Area Network with heterogeneous traffic,” J. Netw. Comput. Appl., vol. 163, p. 102651, 2020. https://doi.org/10.1016/j.jnca.2020.102651

L. Tian, S. Santi, A. Seferagić, J. Lan, and J. Famaey, “Wi-Fi HaLow for the Internet of Things: An up-to-date survey on IEEE 802.11ah research,” J. Netw. Comput. Appl., vol. 182, p. 103036, 2021. https://doi.org/10.1016/j.jnca.2021.103036

X. Chen, Y. Xiao, Y. Cai, J. Lu, and Z. Zhou, “An energy diffserv and application-aware MAC scheduling for VBR streaming video in the IEEE 802.15.3 high-rate wireless personal area networks,” Comput. Commun., vol. 29, no. 17, pp. 3516–3526, 2006. https://doi.org/10.1016/j.comcom.2006.01.020

Ompal, V. M. Mishra, and A. Kumar, “FPGA Integrated IEEE 802.15.4 ZigBee Wireless Sensor Nodes Performance for Industrial Plant Monitoring and Automation,” Nucl. Eng. Technol., 2022. https://doi.org/10.1016/j.net.2022.01.011

G. Knieps and J. M. Bauer, “Internet of things and the economics of 5G-based local industrial networks,” Telecomm. Policy, p. 102261, 2021. https://doi.org/10.1016/j.telpol.2021.102261

D. Zorbas, K. Abdelfadeel, P. Kotzanikolaou, and D. Pesch, “TS-LoRa: Time-slotted LoRaWAN for the Industrial Internet of Things,” Comput. Commun., vol. 153, pp. 1–10, 2020. https://doi.org/10.1016/j.comcom.2020.01.056

R. Islam, M. W. Rahman, R. Rubaiat, M. M. Hasan, M. M. Reza, and M. M. Rahman, “LoRa and server-based home automation using the internet of things (IoT),” J. King Saud Univ. - Comput. Inf. Sci., 2021. https://doi.org/10.1016/j.jksuci.2020.12.020

P. Boccadoro, V. Daniele, P. Di Gennaro, D. Lofù, and P. Tedeschi, “Water quality prediction on a Sigfox-compliant IoT device: The road ahead of WaterS,” Ad Hoc Networks, vol. 126, p. 102749, 2022. https://doi.org/10.1016/j.adhoc.2021.102749

R. K. Jha, Puja, H. Kour, M. Kumar, and S. Jain, “Layer based security in Narrow Band Internet of Things (NB-IoT),” Comput. Networks, vol. 185, p. 107592, 2021. https://doi.org/10.1016/j.comnet.2020.107592

W. Ayoub, A. E. Samhat, F. Nouvel, M. Mroue, H. Jradi, and J.-C. Prévotet, “Media independent solution for mobility management in heterogeneous LPWAN technologies,” Comput. Networks, vol. 182, p. 107423, 2020. https://doi.org/10.1016/j.comnet.2020.107423

S. Farrell, Low-Power Wide Area Network (LPWAN) Overview. Internet Engineering Task Force (IETF), 2018.

M. E. Yuksel and H. Fidan, “Energy-aware system design for batteryless LPWAN devices in IoT applications,” Ad Hoc Networks, vol. 122, p. 102625, 2021. https://doi.org/10.1016/j.adhoc.2021.102625

M. Bor, J. E. Vidler, and U. Roedig, “LoRa for the Internet of Things,” in International Conference on Embedded Wireless Systems and Networks (EWSN) 2016, 2016, pp. 361–366.

C.-H. Liao, G. Zhu, D. Kuwabara, M. Suzuki, and H. Morikawa, “Multi-Hop LoRa Networks Enabled by Concurrent Transmission,” IEEE Access, vol. 5, pp. 21430–21446, 2017. https://doi.org/10.1109/ACCESS.2017.2755858

H.-C. Lee and K.-H. Ke, “Monitoring of Large-Area IoT Sensors Using a LoRa Wireless Mesh Network System: Design and Evaluation,” IEEE Trans. Instrum. Meas., vol. 67, no. 9, pp. 2177–2187, 2018. https://doi.org/10.1109/TIM.2018.2814082

D. Lundell, A. Hedberg, C. Nyberg, and E. Fitzgerald, “A Routing Protocol for LoRA Mesh Networks,” in 19th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM 2018, 2018. https://doi.org/10.1109/WoWMoM.2018.8449743

J. Dias and A. Grilo, “Multi-hop LoRaWAN uplink extension: specification and prototype implementation,” J. Ambient Intell. Humaniz. Comput., vol. 11, no. 3, pp. 945–959, 2020. https://doi.org/10.1007/s12652-019-01207-3

A. Abrardo and A. Pozzebon, “A multi-hop lora linear sensor network for the monitoring of underground environments: The case of the medieval aqueducts in Siena, Italy,” Sensors (Switzerland), vol. 19, no. 2, 2019. https://doi.org/10.3390/s19020402

C. T. Duong and M. K. Kim, “Reliable multi-hop linear network based on LoRa,” Int. J. Control Autom, vol. 11, pp. 143–154, 2018. https://doi.org/10.14257/ijca.2018.11.4.13

G. Zhu, C.-H. Liao, T. Sakdejayont, I.-W. Lai, Y. Narusue, and H. Morikawa, “Improving the Capacity of a Mesh LoRa Network by Spreading-Factor-Based Network Clustering,” IEEE Access, vol. 7, pp. 21584–21596, 2019. https://doi.org/10.1109/ACCESS.2019.2898239

D. L. Mai and M. K. Kim, “Multi-hop lora network with pipelined transmission capability,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12293, pp. 125–135, 2020. https://doi.org/10.1007/978-3-030-58008-7_10

D. L. Mai and M. K. Kim, “Multi-hop LoRa network protocol with minimized latency,” Energies, vol. 16, no. 3, 2020. https://doi.org/10.3390/en13061368

C. Ebi, F. Schaltegger, A. Rust, and F. Blumensaat, “Synchronous LoRa Mesh Network to Monitor Processes in Underground Infrastructure,” IEEE Access, vol. 7, pp. 57663–57677, 2019. https://doi.org/10.1109/ACCESS.2019.2913985

3GPP, "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) system scenarios (Release 13),” 36.942, 2016.

S. Barrachina-Muñoz, B. Bellalta, T. Adame, and A. Bel, “Multi-hop communication in the uplink for LPWANs,” Comput. Networks, vol. 123, pp. 153–168, Aug. 2017. https://doi.org/10.1016/J.COMNET.2017.05.020

S. Corporation, “SX1276/77/78/79 - 137 MHz to 1020 MHz Low Power Long Range Transceiver,” 2019.

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 171 Download : 70

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License