Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 7, No. 1, February 2022
  4. Articles

Issue

Vol. 7, No. 1, February 2022

Issue Published : Feb 28, 2022
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Design and Simulation of Low Power and Voltage Micro Photovoltaic Cell for Mobile Devices

https://doi.org/10.22219/kinetik.v7i1.1355
Ikbal Rullah
Gunadarma University
Robby Kurniawan Harahap
Gunadarma University
Eri Prasetyo Wibowo
Gunadarma University
Antonius Irianto Sukowati
Cendekia Abditama University
Dyah Nur'ainingsih
Gunadarma University
Widyastuti Widyastuti
Gunadarma University

Corresponding Author(s) : Ikbal Rullah

rullahikbal@gmail.com

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 7, No. 1, February 2022
Article Published : Feb 28, 2022

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

In this study, designed and simulated a micro photovoltaic cell circuit which is part of smartphone battery charging system sensor. Problem discussed in this paper was that smartphone are still charging battery from PLN through a wall outlet, but smartphone would be better off if it had other charging alternatives, such as being able to charge anywhere or mobile. This paper proposed used photovoltaic cell that can convert sunlight into electricity and it can charge the battery on a smartphone. Photovoltaic cell were integrated with smartphone batteries in photovoltaic IC to form a battery charging system that can charge smartphone. The design of the micro photovoltaic cell sensor section is based on from the references paper. Micro photovoltaic cell was design by modifying the resistor value in the micro photovoltaic cell circuit, so the output low voltage and power be able to charge the smartphone battery. Designed and simulated micro photovoltaic cell circuits will be carried out using LTSpice. The results that achived in this research, when shunt resistance value was configure negative, the voltage value around 200mV, the power value around 1,48µW. When the shunt resistance value was configure positive the voltage value around 199mV, the power value around 1,44µW. Analysis was carried out by comparing voltage values obtained in this study with previous studies. In this study, a smaller voltage value was obtained by modifying the resistor value in the micro photovoltaic cell circuit. The circuit design will later be implemented in 0.35µm CMOS technology.

Keywords

CMOS Micro Solar Cell Low Power Low Voltage
Rullah, I., Harahap, R. K., Wibowo, E. P., Sukowati, A. I., Nur’ainingsih, D., & Widyastuti, W. (2022). Design and Simulation of Low Power and Voltage Micro Photovoltaic Cell for Mobile Devices . Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 7(1), 23-34. https://doi.org/10.22219/kinetik.v7i1.1355
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. Arima, Y., & Ehara, M. (2006). On-chip solar battery structure for CMOS LSI. IEICE Electronics Express, 3(13), 287–291. https://doi.org/10.1587/ELEX.3.287
  2. Ferri, M., Pinna, D., Dallago, E., & Malcovati, P. (2009). A 0.35-μm CMOS solar energy scavenger with power storage management system. 2009 Ph.D. Research in Microelectronics and Electronics, PRIME 2009, 88–91. https://doi.org/10.1109/RME.2009.5201369
  3. Ferri, M., Pinna, D., Grassi, M., Dallago, E., & Malcovati, P. (2010). Model of integrated micro photovoltaic cell structures for harvesting supplied microsystems in 0.35-μm CMOS technology. Proceedings of IEEE Sensors, 232–235. https://doi.org/10.1109/ICSENS.2010.5690466
  4. Wang, T., Huang, C. C., & Wang, T. J. (2014). Solar battery charger in CMOS 0.25 um technology. International Journal of Automation and Smart Technology, 4(2), 99–103. https://doi.org/10.5875/ausmt.v4i2.431
  5. Kumari, J. S., & Babu, C. S. (2011). Mathematical Modeling and Simulation of Photovoltaic Cell using Matlab-Simulink Environment. International Journal of Electrical and Computer Engineering (IJECE), 2(1). https://doi.org/10.11591/IJECE.V2I1.117
  6. Chenni, R., Makhlouf, M., Kerbache, T., & Bouzid, A. (2007). A detailed modeling method for photovoltaic cells. Energy, 32(9), 1724–1730. https://doi.org/10.1016/J.ENERGY.2006.12.006
  7. Saloux, E., Teyssedou, A., & Sorin, M. (2011). Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point. Solar Energy, 85(5), 713–722. https://doi.org/10.1016/J.SOLENER.2010.12.022
  8. Afghan, S. A., Almusawi, H., & Geza, H. (2017). Simulating the electrical characteristics of a photovoltaic cell based on a single-diode equivalent circuit model. MATEC Web of Conferences, 126. https://doi.org/10.1051/MATECCONF/201712603002
  9. Azzouzi, M., Popescu, D., & Bouchahdane, M. (2016). Modeling of Electrical Characteristics of Photovoltaic Cell Considering Single-Diode Model. Journal of Clean Energy Technologies, 4(6), 414–420. https://doi.org/10.18178/JOCET.2016.4.6.323
  10. Villalva, M. G., Gazoli, J. R., & Filho, E. R. (2009). Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Transactions on Power Electronics, 24(5), 1198–1208. https://doi.org/10.1109/TPEL.2009.2013862
  11. Cubas, J., Pindado, S., & Manuel, C. De. (2014). Explicit Expressions for Solar Panel Equivalent Circuit Parameters Based on Analytical Formulation and the Lambert W-Function. Energies 2014, Vol. 7, Pages 4098-4115, 7(7), 4098–4115. https://doi.org/10.3390/EN7074098
  12. Laudani, A., Riganti Fulginei, F., & Salvini, A. (2014). High performing extraction procedure for the one-diode model of a photovoltaic panel from experimental I-V curves by using reduced forms. Solar Energy, 103, 316–326. https://doi.org/10.1016/J.SOLENER.2014.02.014
  13. Wang, G., Zhao, K., Qiu, T., Yang, X., Zhang, Y., & Zhao, Y. (2016). The error analysis of the reverse saturation current of the diode in the modeling of photovoltaic modules. Energy, 115, 478–485. https://doi.org/10.1016/J.ENERGY.2016.08.098
  14. Series Resistance | PVEducation. (n.d.). Retrieved September 16, 2021, from https://www.pveducation.org/pvcdrom/solar-cell-operation/series-resistance
  15. Shunt Resistance | PVEducation. (n.d.). Retrieved September 16, 2021, from https://www.pveducation.org/pvcdrom/solar-cell-operation/shunt-resistance
  16. Carrero, C., Amador, J., & Arnaltes, S. (2007). A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances. Renewable Energy, 32(15), 2579–2589. https://doi.org/10.1016/J.RENENE.2007.01.001
  17. Xiao, W., Dunford, W. G., & Capel, A. (2004). A novel modeling method for photovoltaic cells. PESC Record - IEEE Annual Power Electronics Specialists Conference, 3, 1950–1956. https://doi.org/10.1109/PESC.2004.1355416
  18. Cuce, P. M., & Cuce, E. (2012). A novel model of photovoltaic modules for parameter estimation and thermodynamic assessment. International Journal of Low-Carbon Technologies, 7(2), 159–165. https://doi.org/10.1093/IJLCT/CTR034
  19. Fill Factor | PVEducation. (n.d.). Retrieved September 16, 2021, from https://www.pveducation.org/pvcdrom/solar-cell-operation/fill-factor
  20. Solar Cell Efficiency | PVEducation. (n.d.). Retrieved October 25, 2021, from https://www.pveducation.org/pvcdrom/solar-cell-operation/solar-cell-efficiency
  21. Kurniawan, R., & Prasetyo, E. (2016). Konsep dan Metodologi Desain Analog CHIP -Berbasiskan Teknologi disertai Penggunaan Tool. TEKNOSAIN.
  22. Steffan, C., Greiner, P., Deutschmann, B., Kollegger, C., & Holweg, G. (2015). Energy harvesting with on-chip solar cells and integrated DC/DC converter. European Solid-State Device Research Conference, 2015-November, 142–145. https://doi.org/10.1109/ESSDERC.2015.7324733
  23. Nagy, G., Arbet, D., Stopjakova, V., & Kovac, M. (2016). Novel CMOS bulk-driven charge pump for ultra low input voltage. Radioengineering, 25(2), 121–331. https://doi.org/10.13164/RE.2016.0321.
  24. Zolkefali, M. Z. B., & Ibrahim, M. N. (2016). A simulation of single stage BJT amplifier Using LTSpice. e-Academia Journal, UiTM Press.
  25. List, M. P. W. P. (2021). From Layout to Chips 2021 MPW Price List https://mycmp.fr. January, 3–4.
Read More

References


Arima, Y., & Ehara, M. (2006). On-chip solar battery structure for CMOS LSI. IEICE Electronics Express, 3(13), 287–291. https://doi.org/10.1587/ELEX.3.287

Ferri, M., Pinna, D., Dallago, E., & Malcovati, P. (2009). A 0.35-μm CMOS solar energy scavenger with power storage management system. 2009 Ph.D. Research in Microelectronics and Electronics, PRIME 2009, 88–91. https://doi.org/10.1109/RME.2009.5201369

Ferri, M., Pinna, D., Grassi, M., Dallago, E., & Malcovati, P. (2010). Model of integrated micro photovoltaic cell structures for harvesting supplied microsystems in 0.35-μm CMOS technology. Proceedings of IEEE Sensors, 232–235. https://doi.org/10.1109/ICSENS.2010.5690466

Wang, T., Huang, C. C., & Wang, T. J. (2014). Solar battery charger in CMOS 0.25 um technology. International Journal of Automation and Smart Technology, 4(2), 99–103. https://doi.org/10.5875/ausmt.v4i2.431

Kumari, J. S., & Babu, C. S. (2011). Mathematical Modeling and Simulation of Photovoltaic Cell using Matlab-Simulink Environment. International Journal of Electrical and Computer Engineering (IJECE), 2(1). https://doi.org/10.11591/IJECE.V2I1.117

Chenni, R., Makhlouf, M., Kerbache, T., & Bouzid, A. (2007). A detailed modeling method for photovoltaic cells. Energy, 32(9), 1724–1730. https://doi.org/10.1016/J.ENERGY.2006.12.006

Saloux, E., Teyssedou, A., & Sorin, M. (2011). Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point. Solar Energy, 85(5), 713–722. https://doi.org/10.1016/J.SOLENER.2010.12.022

Afghan, S. A., Almusawi, H., & Geza, H. (2017). Simulating the electrical characteristics of a photovoltaic cell based on a single-diode equivalent circuit model. MATEC Web of Conferences, 126. https://doi.org/10.1051/MATECCONF/201712603002

Azzouzi, M., Popescu, D., & Bouchahdane, M. (2016). Modeling of Electrical Characteristics of Photovoltaic Cell Considering Single-Diode Model. Journal of Clean Energy Technologies, 4(6), 414–420. https://doi.org/10.18178/JOCET.2016.4.6.323

Villalva, M. G., Gazoli, J. R., & Filho, E. R. (2009). Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Transactions on Power Electronics, 24(5), 1198–1208. https://doi.org/10.1109/TPEL.2009.2013862

Cubas, J., Pindado, S., & Manuel, C. De. (2014). Explicit Expressions for Solar Panel Equivalent Circuit Parameters Based on Analytical Formulation and the Lambert W-Function. Energies 2014, Vol. 7, Pages 4098-4115, 7(7), 4098–4115. https://doi.org/10.3390/EN7074098

Laudani, A., Riganti Fulginei, F., & Salvini, A. (2014). High performing extraction procedure for the one-diode model of a photovoltaic panel from experimental I-V curves by using reduced forms. Solar Energy, 103, 316–326. https://doi.org/10.1016/J.SOLENER.2014.02.014

Wang, G., Zhao, K., Qiu, T., Yang, X., Zhang, Y., & Zhao, Y. (2016). The error analysis of the reverse saturation current of the diode in the modeling of photovoltaic modules. Energy, 115, 478–485. https://doi.org/10.1016/J.ENERGY.2016.08.098

Series Resistance | PVEducation. (n.d.). Retrieved September 16, 2021, from https://www.pveducation.org/pvcdrom/solar-cell-operation/series-resistance

Shunt Resistance | PVEducation. (n.d.). Retrieved September 16, 2021, from https://www.pveducation.org/pvcdrom/solar-cell-operation/shunt-resistance

Carrero, C., Amador, J., & Arnaltes, S. (2007). A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances. Renewable Energy, 32(15), 2579–2589. https://doi.org/10.1016/J.RENENE.2007.01.001

Xiao, W., Dunford, W. G., & Capel, A. (2004). A novel modeling method for photovoltaic cells. PESC Record - IEEE Annual Power Electronics Specialists Conference, 3, 1950–1956. https://doi.org/10.1109/PESC.2004.1355416

Cuce, P. M., & Cuce, E. (2012). A novel model of photovoltaic modules for parameter estimation and thermodynamic assessment. International Journal of Low-Carbon Technologies, 7(2), 159–165. https://doi.org/10.1093/IJLCT/CTR034

Fill Factor | PVEducation. (n.d.). Retrieved September 16, 2021, from https://www.pveducation.org/pvcdrom/solar-cell-operation/fill-factor

Solar Cell Efficiency | PVEducation. (n.d.). Retrieved October 25, 2021, from https://www.pveducation.org/pvcdrom/solar-cell-operation/solar-cell-efficiency

Kurniawan, R., & Prasetyo, E. (2016). Konsep dan Metodologi Desain Analog CHIP -Berbasiskan Teknologi disertai Penggunaan Tool. TEKNOSAIN.

Steffan, C., Greiner, P., Deutschmann, B., Kollegger, C., & Holweg, G. (2015). Energy harvesting with on-chip solar cells and integrated DC/DC converter. European Solid-State Device Research Conference, 2015-November, 142–145. https://doi.org/10.1109/ESSDERC.2015.7324733

Nagy, G., Arbet, D., Stopjakova, V., & Kovac, M. (2016). Novel CMOS bulk-driven charge pump for ultra low input voltage. Radioengineering, 25(2), 121–331. https://doi.org/10.13164/RE.2016.0321.

Zolkefali, M. Z. B., & Ibrahim, M. N. (2016). A simulation of single stage BJT amplifier Using LTSpice. e-Academia Journal, UiTM Press.

List, M. P. W. P. (2021). From Layout to Chips 2021 MPW Price List https://mycmp.fr. January, 3–4.

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 170 Download : 63

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License