This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Design and Simulation of Low Power and Voltage Micro Photovoltaic Cell for Mobile Devices
Corresponding Author(s) : Ikbal Rullah
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 7, No. 1, February 2022
Abstract
In this study, designed and simulated a micro photovoltaic cell circuit which is part of smartphone battery charging system sensor. Problem discussed in this paper was that smartphone are still charging battery from PLN through a wall outlet, but smartphone would be better off if it had other charging alternatives, such as being able to charge anywhere or mobile. This paper proposed used photovoltaic cell that can convert sunlight into electricity and it can charge the battery on a smartphone. Photovoltaic cell were integrated with smartphone batteries in photovoltaic IC to form a battery charging system that can charge smartphone. The design of the micro photovoltaic cell sensor section is based on from the references paper. Micro photovoltaic cell was design by modifying the resistor value in the micro photovoltaic cell circuit, so the output low voltage and power be able to charge the smartphone battery. Designed and simulated micro photovoltaic cell circuits will be carried out using LTSpice. The results that achived in this research, when shunt resistance value was configure negative, the voltage value around 200mV, the power value around 1,48µW. When the shunt resistance value was configure positive the voltage value around 199mV, the power value around 1,44µW. Analysis was carried out by comparing voltage values obtained in this study with previous studies. In this study, a smaller voltage value was obtained by modifying the resistor value in the micro photovoltaic cell circuit. The circuit design will later be implemented in 0.35µm CMOS technology.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Arima, Y., & Ehara, M. (2006). On-chip solar battery structure for CMOS LSI. IEICE Electronics Express, 3(13), 287–291. https://doi.org/10.1587/ELEX.3.287
- Ferri, M., Pinna, D., Dallago, E., & Malcovati, P. (2009). A 0.35-μm CMOS solar energy scavenger with power storage management system. 2009 Ph.D. Research in Microelectronics and Electronics, PRIME 2009, 88–91. https://doi.org/10.1109/RME.2009.5201369
- Ferri, M., Pinna, D., Grassi, M., Dallago, E., & Malcovati, P. (2010). Model of integrated micro photovoltaic cell structures for harvesting supplied microsystems in 0.35-μm CMOS technology. Proceedings of IEEE Sensors, 232–235. https://doi.org/10.1109/ICSENS.2010.5690466
- Wang, T., Huang, C. C., & Wang, T. J. (2014). Solar battery charger in CMOS 0.25 um technology. International Journal of Automation and Smart Technology, 4(2), 99–103. https://doi.org/10.5875/ausmt.v4i2.431
- Kumari, J. S., & Babu, C. S. (2011). Mathematical Modeling and Simulation of Photovoltaic Cell using Matlab-Simulink Environment. International Journal of Electrical and Computer Engineering (IJECE), 2(1). https://doi.org/10.11591/IJECE.V2I1.117
- Chenni, R., Makhlouf, M., Kerbache, T., & Bouzid, A. (2007). A detailed modeling method for photovoltaic cells. Energy, 32(9), 1724–1730. https://doi.org/10.1016/J.ENERGY.2006.12.006
- Saloux, E., Teyssedou, A., & Sorin, M. (2011). Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point. Solar Energy, 85(5), 713–722. https://doi.org/10.1016/J.SOLENER.2010.12.022
- Afghan, S. A., Almusawi, H., & Geza, H. (2017). Simulating the electrical characteristics of a photovoltaic cell based on a single-diode equivalent circuit model. MATEC Web of Conferences, 126. https://doi.org/10.1051/MATECCONF/201712603002
- Azzouzi, M., Popescu, D., & Bouchahdane, M. (2016). Modeling of Electrical Characteristics of Photovoltaic Cell Considering Single-Diode Model. Journal of Clean Energy Technologies, 4(6), 414–420. https://doi.org/10.18178/JOCET.2016.4.6.323
- Villalva, M. G., Gazoli, J. R., & Filho, E. R. (2009). Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Transactions on Power Electronics, 24(5), 1198–1208. https://doi.org/10.1109/TPEL.2009.2013862
- Cubas, J., Pindado, S., & Manuel, C. De. (2014). Explicit Expressions for Solar Panel Equivalent Circuit Parameters Based on Analytical Formulation and the Lambert W-Function. Energies 2014, Vol. 7, Pages 4098-4115, 7(7), 4098–4115. https://doi.org/10.3390/EN7074098
- Laudani, A., Riganti Fulginei, F., & Salvini, A. (2014). High performing extraction procedure for the one-diode model of a photovoltaic panel from experimental I-V curves by using reduced forms. Solar Energy, 103, 316–326. https://doi.org/10.1016/J.SOLENER.2014.02.014
- Wang, G., Zhao, K., Qiu, T., Yang, X., Zhang, Y., & Zhao, Y. (2016). The error analysis of the reverse saturation current of the diode in the modeling of photovoltaic modules. Energy, 115, 478–485. https://doi.org/10.1016/J.ENERGY.2016.08.098
- Series Resistance | PVEducation. (n.d.). Retrieved September 16, 2021, from https://www.pveducation.org/pvcdrom/solar-cell-operation/series-resistance
- Shunt Resistance | PVEducation. (n.d.). Retrieved September 16, 2021, from https://www.pveducation.org/pvcdrom/solar-cell-operation/shunt-resistance
- Carrero, C., Amador, J., & Arnaltes, S. (2007). A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances. Renewable Energy, 32(15), 2579–2589. https://doi.org/10.1016/J.RENENE.2007.01.001
- Xiao, W., Dunford, W. G., & Capel, A. (2004). A novel modeling method for photovoltaic cells. PESC Record - IEEE Annual Power Electronics Specialists Conference, 3, 1950–1956. https://doi.org/10.1109/PESC.2004.1355416
- Cuce, P. M., & Cuce, E. (2012). A novel model of photovoltaic modules for parameter estimation and thermodynamic assessment. International Journal of Low-Carbon Technologies, 7(2), 159–165. https://doi.org/10.1093/IJLCT/CTR034
- Fill Factor | PVEducation. (n.d.). Retrieved September 16, 2021, from https://www.pveducation.org/pvcdrom/solar-cell-operation/fill-factor
- Solar Cell Efficiency | PVEducation. (n.d.). Retrieved October 25, 2021, from https://www.pveducation.org/pvcdrom/solar-cell-operation/solar-cell-efficiency
- Kurniawan, R., & Prasetyo, E. (2016). Konsep dan Metodologi Desain Analog CHIP -Berbasiskan Teknologi disertai Penggunaan Tool. TEKNOSAIN.
- Steffan, C., Greiner, P., Deutschmann, B., Kollegger, C., & Holweg, G. (2015). Energy harvesting with on-chip solar cells and integrated DC/DC converter. European Solid-State Device Research Conference, 2015-November, 142–145. https://doi.org/10.1109/ESSDERC.2015.7324733
- Nagy, G., Arbet, D., Stopjakova, V., & Kovac, M. (2016). Novel CMOS bulk-driven charge pump for ultra low input voltage. Radioengineering, 25(2), 121–331. https://doi.org/10.13164/RE.2016.0321.
- Zolkefali, M. Z. B., & Ibrahim, M. N. (2016). A simulation of single stage BJT amplifier Using LTSpice. e-Academia Journal, UiTM Press.
- List, M. P. W. P. (2021). From Layout to Chips 2021 MPW Price List https://mycmp.fr. January, 3–4.
References
Arima, Y., & Ehara, M. (2006). On-chip solar battery structure for CMOS LSI. IEICE Electronics Express, 3(13), 287–291. https://doi.org/10.1587/ELEX.3.287
Ferri, M., Pinna, D., Dallago, E., & Malcovati, P. (2009). A 0.35-μm CMOS solar energy scavenger with power storage management system. 2009 Ph.D. Research in Microelectronics and Electronics, PRIME 2009, 88–91. https://doi.org/10.1109/RME.2009.5201369
Ferri, M., Pinna, D., Grassi, M., Dallago, E., & Malcovati, P. (2010). Model of integrated micro photovoltaic cell structures for harvesting supplied microsystems in 0.35-μm CMOS technology. Proceedings of IEEE Sensors, 232–235. https://doi.org/10.1109/ICSENS.2010.5690466
Wang, T., Huang, C. C., & Wang, T. J. (2014). Solar battery charger in CMOS 0.25 um technology. International Journal of Automation and Smart Technology, 4(2), 99–103. https://doi.org/10.5875/ausmt.v4i2.431
Kumari, J. S., & Babu, C. S. (2011). Mathematical Modeling and Simulation of Photovoltaic Cell using Matlab-Simulink Environment. International Journal of Electrical and Computer Engineering (IJECE), 2(1). https://doi.org/10.11591/IJECE.V2I1.117
Chenni, R., Makhlouf, M., Kerbache, T., & Bouzid, A. (2007). A detailed modeling method for photovoltaic cells. Energy, 32(9), 1724–1730. https://doi.org/10.1016/J.ENERGY.2006.12.006
Saloux, E., Teyssedou, A., & Sorin, M. (2011). Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point. Solar Energy, 85(5), 713–722. https://doi.org/10.1016/J.SOLENER.2010.12.022
Afghan, S. A., Almusawi, H., & Geza, H. (2017). Simulating the electrical characteristics of a photovoltaic cell based on a single-diode equivalent circuit model. MATEC Web of Conferences, 126. https://doi.org/10.1051/MATECCONF/201712603002
Azzouzi, M., Popescu, D., & Bouchahdane, M. (2016). Modeling of Electrical Characteristics of Photovoltaic Cell Considering Single-Diode Model. Journal of Clean Energy Technologies, 4(6), 414–420. https://doi.org/10.18178/JOCET.2016.4.6.323
Villalva, M. G., Gazoli, J. R., & Filho, E. R. (2009). Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Transactions on Power Electronics, 24(5), 1198–1208. https://doi.org/10.1109/TPEL.2009.2013862
Cubas, J., Pindado, S., & Manuel, C. De. (2014). Explicit Expressions for Solar Panel Equivalent Circuit Parameters Based on Analytical Formulation and the Lambert W-Function. Energies 2014, Vol. 7, Pages 4098-4115, 7(7), 4098–4115. https://doi.org/10.3390/EN7074098
Laudani, A., Riganti Fulginei, F., & Salvini, A. (2014). High performing extraction procedure for the one-diode model of a photovoltaic panel from experimental I-V curves by using reduced forms. Solar Energy, 103, 316–326. https://doi.org/10.1016/J.SOLENER.2014.02.014
Wang, G., Zhao, K., Qiu, T., Yang, X., Zhang, Y., & Zhao, Y. (2016). The error analysis of the reverse saturation current of the diode in the modeling of photovoltaic modules. Energy, 115, 478–485. https://doi.org/10.1016/J.ENERGY.2016.08.098
Series Resistance | PVEducation. (n.d.). Retrieved September 16, 2021, from https://www.pveducation.org/pvcdrom/solar-cell-operation/series-resistance
Shunt Resistance | PVEducation. (n.d.). Retrieved September 16, 2021, from https://www.pveducation.org/pvcdrom/solar-cell-operation/shunt-resistance
Carrero, C., Amador, J., & Arnaltes, S. (2007). A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances. Renewable Energy, 32(15), 2579–2589. https://doi.org/10.1016/J.RENENE.2007.01.001
Xiao, W., Dunford, W. G., & Capel, A. (2004). A novel modeling method for photovoltaic cells. PESC Record - IEEE Annual Power Electronics Specialists Conference, 3, 1950–1956. https://doi.org/10.1109/PESC.2004.1355416
Cuce, P. M., & Cuce, E. (2012). A novel model of photovoltaic modules for parameter estimation and thermodynamic assessment. International Journal of Low-Carbon Technologies, 7(2), 159–165. https://doi.org/10.1093/IJLCT/CTR034
Fill Factor | PVEducation. (n.d.). Retrieved September 16, 2021, from https://www.pveducation.org/pvcdrom/solar-cell-operation/fill-factor
Solar Cell Efficiency | PVEducation. (n.d.). Retrieved October 25, 2021, from https://www.pveducation.org/pvcdrom/solar-cell-operation/solar-cell-efficiency
Kurniawan, R., & Prasetyo, E. (2016). Konsep dan Metodologi Desain Analog CHIP -Berbasiskan Teknologi disertai Penggunaan Tool. TEKNOSAIN.
Steffan, C., Greiner, P., Deutschmann, B., Kollegger, C., & Holweg, G. (2015). Energy harvesting with on-chip solar cells and integrated DC/DC converter. European Solid-State Device Research Conference, 2015-November, 142–145. https://doi.org/10.1109/ESSDERC.2015.7324733
Nagy, G., Arbet, D., Stopjakova, V., & Kovac, M. (2016). Novel CMOS bulk-driven charge pump for ultra low input voltage. Radioengineering, 25(2), 121–331. https://doi.org/10.13164/RE.2016.0321.
Zolkefali, M. Z. B., & Ibrahim, M. N. (2016). A simulation of single stage BJT amplifier Using LTSpice. e-Academia Journal, UiTM Press.
List, M. P. W. P. (2021). From Layout to Chips 2021 MPW Price List https://mycmp.fr. January, 3–4.