Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 7, No. 1, February 2022
  4. Articles

Issue

Vol. 7, No. 1, February 2022

Issue Published : Feb 28, 2022
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

DC Motor PID Control System for Tamarind Turmeric Herb Packaging on Rotary Cup Sealer Machine

https://doi.org/10.22219/kinetik.v7i1.1352
Mila Fauziyah
State Polytechnic of Malang
Supriatna Adhisuwignjo
State Polytechnic of Malang
Lathifatun Nazhiroh Ifa
Department of Electrical Engineering State Polytechnic of Malang
Bagus Fajar Afandi
State Polytechnic of Malang

Corresponding Author(s) : Lathifatun Nazhiroh Ifa

nazhirohlathifatun@gmail.com

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 7, No. 1, February 2022
Article Published : Feb 28, 2022

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

The end of this research is to find PID tuning value on the packaging automation process using the PID method. By finding the most suitable PID tuning value, a fast packaging process is obtained. Herbal ingredients in herbs that are left in the open for a long time tend to be damaged more quickly. So after the production process ends, the herbs must be packaged quickly. With the packaging automation method, the product can be hygienic and does not spoil quickly. One of the most widely and easy-to-use for automation methods in the industry is the PID control method because it can accelerate the system response, stabilize the system to match the setpoint and minimize overshoot.


This study will discuss how the design of the PID control system using DC motor transfer function modeling in Matlab and the Second Ziegler-Nichols PID tuning method, the effect of the load on the motor response, and the effect of PID on the production speed. The system was tested with PID tuning values are Kp = 12, Ki = 12,506, Kd = 0.0028785, speed motor 24 RPM and a load of 3,160 Kg produces a good output response are delay time = 0.502 s, rise time = 0.804 s, settling time = 4.023 s, peak time = 133.084 s, Overshoot = 0.125% and Steady State Error = 0%. The effect of PID control on production speed is 83% faster than manual production and 29% faster than systems without PID.

Keywords

Tamarind Turmeric DC Motor PID Control Ziegler-Nichols Transfer Function
Fauziyah, M., Adhisuwignjo, S., Ifa, L. N., & Afandi, B. F. (2022). DC Motor PID Control System for Tamarind Turmeric Herb Packaging on Rotary Cup Sealer Machine. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 7(1), 45-54. https://doi.org/10.22219/kinetik.v7i1.1352
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. R. S. M. Sadigh, “Optimizing PID Controller Coefficients Using Fractional Order Based on Intelligent Optimization Algorithms for Quadcopter”. 2018 6th RSI International Conference on Robotics and Mechatronics (IcRoM), 2018, pp. 146-151. doi: https://doi.org/10.1109/ICRoM.2018.8657616.
  2. N. K. Sinha and P. M. Tiwari, “Multiple motor synchronization using nonlinear PID control,” 2017 3rd International Conference on Advances in Computing, Communication & Automation (ICACCA) (Fall), 2017, pp. 1-6. doi: https://doi.org/10.1109/ICACCAF.2017.8344713.
  3. S. Chaudhary and A. Kumar, “Control of Twin Rotor MIMO System Using 1-Degree-of-Freedom PID, 2-Degree-of-Freedom PID and Fractional order PID Controller”. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), 2019, pp. 746-751. doi: https://doi.org/10.1109/ICECA.2019.8821923.
  4. K. Gadekar, S. Joshi, and H. Mehta, “Performance Improvement in BLDC Motor DriveUsing Self-Tuning PID Controller”. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), 2020, pp. 1162-1166, 2020. https://doi.org/10.1109/ICIRCA48905.2020.9183219
  5. M. Mahmud, S. M. A. Motakabber, A. H. M. Zahirul Alam, and A. N. Nordin, “Adaptive PID Controller Using for Speed Control of the BLDC Motor”. 2020 IEEE International Conference on Semiconductor Electronics (ICSE), 2020, pp. 168-171. doi: https://doi.org/10.1109/ICSE49846.2020.9166883.
  6. O. Salazar-Aquino, J. Pampamallco-Jara, and A. Rojas-Moreno, “Position Control of a 2DOF Rotary Torsion Plant Using a 2DOF Fractional Order PID Controller. ," 2020 IEEE XXVII International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 2020, pp. 1-4. doi: https://doi.org/10.1109/INTERCON50315.2020.9220228.
  7. A. Rojas-Moreno, O. Salazar-Aquino, and J. Pampamallco-Jara, “Control of the Angular Position of a Rotary TorsionPlant Using a 2DOF FO PID Controller”. 2018 IEEE 38th Central America and Panama Convention (CONCAPAN XXXVIII), 2018, pp. 1-5. doi: https://doi.org/10.1109/CONCAPAN.2018.8596501.
  8. Y. B. Koca, Y. Aslan, and B. Gökçe, “Speed Control Based PID Configuration of a DC Motor for An Unmanned Agricultural Vehicle,” in 2021 8th International Conference on Electrical and Electronics Engineering, ICEEE 2021, Apr. 2021, pp. 117–120. doi: https://doi.org/10.1109/ICEEE52452.2021.9415908.
  9. Z. Zhang, H. Xiong, and C. He, “Research on Active Magnetic Bearing Rotor System Based on Fractional PID Control,” in Proceedings - 2021 6th Asia Conference on Power and Electrical Engineering, ACPEE 2021, Apr. 2021, pp. 868–872. doi: https://doi.org/10.1109/ACPEE51499.2021.9436868.
  10. S. Alqahtani, S. Ganesan, and M. A. Zohdy, “The Comparison between PI and PID Controllers in Engine Speed Control Model,” in IEEE International Conference on Electro Information Technology, Jul. 2020, vol. 2020-July, pp. 629–634. doi: https://doi.org/10.1109/EIT48999.2020.9208313.
  11. S. Pothorajoo and H. Daniyal, “PID Bidirectional Speed Controller for BLDC with Seamless Speed Reversal using Direct Commutation Switching Scheme”. 2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC), 2017, pp. 7-12. doi: https://doi.org/10.1109/ICSGRC.2017.8070558.
  12. T. A. Tran, “Analysis of the PID Controller for Marine Diesel Engine Speed on Simulink Environment”. 2020 International Conference on Electrical Engineering and Control Technologies (CEECT), 2020, pp. 1-5. doi: https://doi.org/10.1109/CEECT50755.2020.9298679.
  13. H. U.M. Marma, X. Liang, W. Li, and H. Zhang, “Comparative Study of Transfer Function Based Load Model and Composite Load Model”. 2019 IEEE Industry Applications Society Annual Meeting, 2019, pp. 1-13. doi: https://doi.org/10.1109/IAS.2019.8911920.
  14. U. H. Lee, C. -W. Pan, and E. J. Rouse, “Empirical Characterization of a High-performance Exterior-rotor TypeBrushless DC Motor and Drive”. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019, pp. 8018-8025. doi: https://doi.org/10.1109/IROS40897.2019.8967626.
  15. B. Kopchak, A. Kushmir, and M. Kopchak, “Approximation of PM DC Micromotor Transfer Function by Fractional Order Transfer Function,” Jul. 2021, pp. 20–24. doi: https://doi.org/10.1109/memstech53091.2021.9467969.
  16. F. S. M. Al Khafaji, W. Z. Wan Hasan, M. M. Isa, and N. Sulaiman, “A HSMDAQ System for EstimatingTransfer Function of a DC motor”. 2019 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), 2019, pp. 25-28. doi: https://doi.org/10.1109/PrimeAsia47521.2019.8950719.
  17. P. Suganthi, S. Nagapavithra, and S. Umamaheswari, “Modeling and Simulation of Closed Loop Speed Control for BLDC Motor”. 2017 Conference on Emerging Devices and Smart Systems (ICEDSS), 2017, pp. 229-233. doi: https://doi.org/10.1109/ICEDSS.2017.8073686.
  18. R. Aisuwarya and Y. Hidayati, “Implementation of Ziegler-Nichols PID Tuning Method on Stabilizing Temperature of Hot-water Dispenser,” 2019. doi: https://doi.org/10.1109/QIR.2019.8898259.
  19. H. M. Shariff, M. H. F. Rahiman, R. Adnan, M. H. Marzaki, M. Tajjudin, and M. H. A. Jalil, “The PID Integrated Anti-Windup Scheme by Ziegler-Nichols Tuning for Small-Scale Steam Distillation Process,” 2019. doi: https://doi.org/10.1109/ICSEngT.2019.8906436.
  20. N. N. B. M. Mazlan, N. M. Thamrin, and N. A. Razak, “Comparison Between Ziegler-Nichols and AMIGO Tuning Techniques in Automated Steering Control System for Autonomous Vehicle”. 2020 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), 2020, pp. 7-12. doi: https://doi.org/10.1109/I2CACIS49202.2020.9140089.
  21. S. A. Bhatti, S. A. Malik, and A. Daraz, “Comparison of P-I and I-P Controller by Using Ziegler-Nichols Tuning Method for Speed Control of DC Motor,” 2016. doi: https://doi.org/10.1109/INTELSE.2016.7475144.
  22. C. A. Aung, Y. V. Hote, G. Pillai, and S. Jain, “PID controller design for solar tracker via modified ziegler nichols rules,” in 2020 2nd International Conference on Smart Power and Internet Energy Systems, SPIES 2020, Sep. 2020, pp. 531–536. doi: https://doi.org/10.1109/SPIES48661.2020.9243009.
  23. N. Hambali, A. Masngut, A. A. Ishak, and Z. Janin, “Process Controllability for Flow Control System Using Ziegler-Nichols (ZN), Cohen-Coon (CC) and Chien-Hrones-Reswick (CHR) Tuning Methods,” 2014. doi: https://doi.org/10.1109/ICSIMA.2014.7047432.
  24. A. A. Azman, M. H. F. Rahiman, N. N. Mohammad, M. H. Marzaki, M. N. Taib, and M. F. Ali, “Modeling and Comparative Study of PID Ziegler Nichols (ZN) and Cohen–Coon (CC) tuning method for Multi-Tube Aluminum Sulphate Water Filter (MTAS)”. 2017 IEEE 2nd International Conference on Automatic Control and Intelligent Systems (I2CACIS), 2017, pp. 25-30, 2017. doi: https://doi.org/10.1109/I2CACIS.2017.8239027.
  25. S. Balamurugan and A. Umarani, “Study of Discrete PID Controller for DC Motor Speed Control Using MATLAB,” Sep. 2020. doi: 10.1109/ICCIT-144147971.2020.9213780.
  26. A. S. Semenov, v. M. Khubieva, and Y. S. Kharitonov, “Mathematical Modeling of Static and Dynamic Modes DC Motors in Software Package MATLAB”. 2018 International Russian Automation Conference (RusAutoCon), 2018, pp. 1-5. doi: https://doi.org/10.1109/RUSAUTOCON.2018.8501666.
  27. I. Ferdiansyah, L. P. S. Raharja, D.S. Yanaratri, and E. Purwanto, “Design of PID Controllers for Speed Control of Three Phase Induction Motor Based on Direct-Axis Current (Id) Coordinate Using IFOC,” 2019. doi: https://doi.org/10.1109/ICITISEE48480.2019.9003893.
  28. I. Husnaini, Krismadinata, Asnil, and Hastuti, “PI and PID Controller Design and Analysis for DC Shunt Motor Speed Control,” in International Journal of Recent Technology and Engineering, 2019, pp. 144-150. doi: https://doi.org/10.35940/ijrte.c6521.118419
Read More

References


R. S. M. Sadigh, “Optimizing PID Controller Coefficients Using Fractional Order Based on Intelligent Optimization Algorithms for Quadcopter”. 2018 6th RSI International Conference on Robotics and Mechatronics (IcRoM), 2018, pp. 146-151. doi: https://doi.org/10.1109/ICRoM.2018.8657616.

N. K. Sinha and P. M. Tiwari, “Multiple motor synchronization using nonlinear PID control,” 2017 3rd International Conference on Advances in Computing, Communication & Automation (ICACCA) (Fall), 2017, pp. 1-6. doi: https://doi.org/10.1109/ICACCAF.2017.8344713.

S. Chaudhary and A. Kumar, “Control of Twin Rotor MIMO System Using 1-Degree-of-Freedom PID, 2-Degree-of-Freedom PID and Fractional order PID Controller”. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), 2019, pp. 746-751. doi: https://doi.org/10.1109/ICECA.2019.8821923.

K. Gadekar, S. Joshi, and H. Mehta, “Performance Improvement in BLDC Motor DriveUsing Self-Tuning PID Controller”. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), 2020, pp. 1162-1166, 2020. https://doi.org/10.1109/ICIRCA48905.2020.9183219

M. Mahmud, S. M. A. Motakabber, A. H. M. Zahirul Alam, and A. N. Nordin, “Adaptive PID Controller Using for Speed Control of the BLDC Motor”. 2020 IEEE International Conference on Semiconductor Electronics (ICSE), 2020, pp. 168-171. doi: https://doi.org/10.1109/ICSE49846.2020.9166883.

O. Salazar-Aquino, J. Pampamallco-Jara, and A. Rojas-Moreno, “Position Control of a 2DOF Rotary Torsion Plant Using a 2DOF Fractional Order PID Controller. ," 2020 IEEE XXVII International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 2020, pp. 1-4. doi: https://doi.org/10.1109/INTERCON50315.2020.9220228.

A. Rojas-Moreno, O. Salazar-Aquino, and J. Pampamallco-Jara, “Control of the Angular Position of a Rotary TorsionPlant Using a 2DOF FO PID Controller”. 2018 IEEE 38th Central America and Panama Convention (CONCAPAN XXXVIII), 2018, pp. 1-5. doi: https://doi.org/10.1109/CONCAPAN.2018.8596501.

Y. B. Koca, Y. Aslan, and B. Gökçe, “Speed Control Based PID Configuration of a DC Motor for An Unmanned Agricultural Vehicle,” in 2021 8th International Conference on Electrical and Electronics Engineering, ICEEE 2021, Apr. 2021, pp. 117–120. doi: https://doi.org/10.1109/ICEEE52452.2021.9415908.

Z. Zhang, H. Xiong, and C. He, “Research on Active Magnetic Bearing Rotor System Based on Fractional PID Control,” in Proceedings - 2021 6th Asia Conference on Power and Electrical Engineering, ACPEE 2021, Apr. 2021, pp. 868–872. doi: https://doi.org/10.1109/ACPEE51499.2021.9436868.

S. Alqahtani, S. Ganesan, and M. A. Zohdy, “The Comparison between PI and PID Controllers in Engine Speed Control Model,” in IEEE International Conference on Electro Information Technology, Jul. 2020, vol. 2020-July, pp. 629–634. doi: https://doi.org/10.1109/EIT48999.2020.9208313.

S. Pothorajoo and H. Daniyal, “PID Bidirectional Speed Controller for BLDC with Seamless Speed Reversal using Direct Commutation Switching Scheme”. 2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC), 2017, pp. 7-12. doi: https://doi.org/10.1109/ICSGRC.2017.8070558.

T. A. Tran, “Analysis of the PID Controller for Marine Diesel Engine Speed on Simulink Environment”. 2020 International Conference on Electrical Engineering and Control Technologies (CEECT), 2020, pp. 1-5. doi: https://doi.org/10.1109/CEECT50755.2020.9298679.

H. U.M. Marma, X. Liang, W. Li, and H. Zhang, “Comparative Study of Transfer Function Based Load Model and Composite Load Model”. 2019 IEEE Industry Applications Society Annual Meeting, 2019, pp. 1-13. doi: https://doi.org/10.1109/IAS.2019.8911920.

U. H. Lee, C. -W. Pan, and E. J. Rouse, “Empirical Characterization of a High-performance Exterior-rotor TypeBrushless DC Motor and Drive”. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019, pp. 8018-8025. doi: https://doi.org/10.1109/IROS40897.2019.8967626.

B. Kopchak, A. Kushmir, and M. Kopchak, “Approximation of PM DC Micromotor Transfer Function by Fractional Order Transfer Function,” Jul. 2021, pp. 20–24. doi: https://doi.org/10.1109/memstech53091.2021.9467969.

F. S. M. Al Khafaji, W. Z. Wan Hasan, M. M. Isa, and N. Sulaiman, “A HSMDAQ System for EstimatingTransfer Function of a DC motor”. 2019 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), 2019, pp. 25-28. doi: https://doi.org/10.1109/PrimeAsia47521.2019.8950719.

P. Suganthi, S. Nagapavithra, and S. Umamaheswari, “Modeling and Simulation of Closed Loop Speed Control for BLDC Motor”. 2017 Conference on Emerging Devices and Smart Systems (ICEDSS), 2017, pp. 229-233. doi: https://doi.org/10.1109/ICEDSS.2017.8073686.

R. Aisuwarya and Y. Hidayati, “Implementation of Ziegler-Nichols PID Tuning Method on Stabilizing Temperature of Hot-water Dispenser,” 2019. doi: https://doi.org/10.1109/QIR.2019.8898259.

H. M. Shariff, M. H. F. Rahiman, R. Adnan, M. H. Marzaki, M. Tajjudin, and M. H. A. Jalil, “The PID Integrated Anti-Windup Scheme by Ziegler-Nichols Tuning for Small-Scale Steam Distillation Process,” 2019. doi: https://doi.org/10.1109/ICSEngT.2019.8906436.

N. N. B. M. Mazlan, N. M. Thamrin, and N. A. Razak, “Comparison Between Ziegler-Nichols and AMIGO Tuning Techniques in Automated Steering Control System for Autonomous Vehicle”. 2020 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), 2020, pp. 7-12. doi: https://doi.org/10.1109/I2CACIS49202.2020.9140089.

S. A. Bhatti, S. A. Malik, and A. Daraz, “Comparison of P-I and I-P Controller by Using Ziegler-Nichols Tuning Method for Speed Control of DC Motor,” 2016. doi: https://doi.org/10.1109/INTELSE.2016.7475144.

C. A. Aung, Y. V. Hote, G. Pillai, and S. Jain, “PID controller design for solar tracker via modified ziegler nichols rules,” in 2020 2nd International Conference on Smart Power and Internet Energy Systems, SPIES 2020, Sep. 2020, pp. 531–536. doi: https://doi.org/10.1109/SPIES48661.2020.9243009.

N. Hambali, A. Masngut, A. A. Ishak, and Z. Janin, “Process Controllability for Flow Control System Using Ziegler-Nichols (ZN), Cohen-Coon (CC) and Chien-Hrones-Reswick (CHR) Tuning Methods,” 2014. doi: https://doi.org/10.1109/ICSIMA.2014.7047432.

A. A. Azman, M. H. F. Rahiman, N. N. Mohammad, M. H. Marzaki, M. N. Taib, and M. F. Ali, “Modeling and Comparative Study of PID Ziegler Nichols (ZN) and Cohen–Coon (CC) tuning method for Multi-Tube Aluminum Sulphate Water Filter (MTAS)”. 2017 IEEE 2nd International Conference on Automatic Control and Intelligent Systems (I2CACIS), 2017, pp. 25-30, 2017. doi: https://doi.org/10.1109/I2CACIS.2017.8239027.

S. Balamurugan and A. Umarani, “Study of Discrete PID Controller for DC Motor Speed Control Using MATLAB,” Sep. 2020. doi: 10.1109/ICCIT-144147971.2020.9213780.

A. S. Semenov, v. M. Khubieva, and Y. S. Kharitonov, “Mathematical Modeling of Static and Dynamic Modes DC Motors in Software Package MATLAB”. 2018 International Russian Automation Conference (RusAutoCon), 2018, pp. 1-5. doi: https://doi.org/10.1109/RUSAUTOCON.2018.8501666.

I. Ferdiansyah, L. P. S. Raharja, D.S. Yanaratri, and E. Purwanto, “Design of PID Controllers for Speed Control of Three Phase Induction Motor Based on Direct-Axis Current (Id) Coordinate Using IFOC,” 2019. doi: https://doi.org/10.1109/ICITISEE48480.2019.9003893.

I. Husnaini, Krismadinata, Asnil, and Hastuti, “PI and PID Controller Design and Analysis for DC Shunt Motor Speed Control,” in International Journal of Recent Technology and Engineering, 2019, pp. 144-150. doi: https://doi.org/10.35940/ijrte.c6521.118419

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 179 Download : 82

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License