Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 6, No. 4, November 2021
  4. Articles

Issue

Vol. 6, No. 4, November 2021

Issue Published : Nov 30, 2021
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Employee Attrition and Performance Prediction using Univariate ROC feature selection and Random Forest

https://doi.org/10.22219/kinetik.v6i4.1345
Aris Nurhindarto
Universitas Dian Nuswantoro
Esa Wahyu Andriansyah
Universitas Dian Nuswantoro
Farrikh Alzami
UIAN NUSWANTORO UNIVERSITY
Purwanto Purwanto
Universitas Dian Nuswantoro
Moch Arief Soeleman
Universitas Dian Nuswantoro
Dwi Puji Prabowo
Universitas Dian Nuswantoro

Corresponding Author(s) : Farrikh Alzami

alzami@dsn.dinus.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 6, No. 4, November 2021
Article Published : Mar 8, 2022

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Each company applies a contract extension to assess the performance of its employees. Employees with good performance in the company are entitled to future contracts within a certain period of time. In a pandemic time, many companies have made decisions to carry out WFH (Work from Home) activities even to Termination (Attrition) of Employment. The company's performance cannot be stable if in certain fields it does not meet the criteria required by the company. Thus, due to many things to consider in contract extension, we are proposed feature selection steps such as duplicate features, correlated features and Univariate Receiver Operating Characteristics curve (ROC) to reduce features from 35 to 21 Features. Then, after we obtained the best features, we applied into Decision Trees and Random Forest. By optimizing parameter selection using parameter grid, the research concluded that Random Forest with feature selection can predict Employee Attrition and Performance by obtain accuracy 79.16%, Recall 76% and Precision 82,6%. Thus with those result, we can conclude that we can obtain better prediction using 21 features for employee attrition and performance which help the higher management in making decisions.

Keywords

Employee Attrition and Performance Feature Selection Univariate ROC Receiver Operating Characteristics curve Decision Tree Random Forest
Nurhindarto, A., Andriansyah, E. W., Alzami, F., Purwanto, P., Soeleman, M. A., & Prabowo, D. P. (2022). Employee Attrition and Performance Prediction using Univariate ROC feature selection and Random Forest. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 6(4). https://doi.org/10.22219/kinetik.v6i4.1345
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. P. Altıok, “Applicable vision, mission and the effects of strategic management on crisis resolve,” Procedia - Soc. Behav. Sci., vol. 24, pp. 61–71, 2011. https://doi.org/10.1016/j.sbspro.2011.09.057
  2. A. A. Davidescu, S.-A. Apostu, A. Paul, and I. Casuneanu, “Work Flexibility, Job Satisfaction, and Job Performance among Romanian Employees—Implications for Sustainable Human Resource Management,” Sustainability, vol. 12, no. 15, p. 6086, Jul. 2020. https://doi.org/10.3390/su12156086
  3. S. M. Hamidi, “Performance Appraisal and Its Effects on Employees Motivation: A Case Study of Afghan Wireless Communications in Kabul,” SSRN Electron. J., 2019. https://dx.doi.org/10.2139/ssrn.3426851
  4. V. V. Saradhi and G. K. Palshikar, “Employee churn prediction,” Expert Syst. Appl., vol. 38, no. 3, pp. 1999–2006, Mar. 2011. https://doi.org/10.1016/j.eswa.2010.07.134
  5. V. Shapoval, “Organizational injustice and emotional labor in the hospitality industry: A theoretical review,” Int. J. Hosp. Manag., vol. 83, pp. 56–64, Oct. 2019. https://doi.org/10.1016/j.ijhm.2019.04.002
  6. K. Haldorai, W. G. Kim, S. G. Pillai, T. (Eliot) Park, and K. Balasubramanian, “Factors affecting hotel employees’ attrition and turnover: Application of pull-push-mooring framework,” Int. J. Hosp. Manag., vol. 83, pp. 46–55, Oct. 2019. https://doi.org/10.1016/j.ijhm.2019.04.003
  7. D. J. Madigan and L. E. Kim, “Towards an understanding of teacher attrition: A meta-analysis of burnout, job satisfaction, and teachers’ intentions to quit,” Teach. Teach. Educ., vol. 105, p. 103425, Sep. 2021. https://doi.org/10.1016/j.tate.2021.103425
  8. A. Oussous, F.-Z. Benjelloun, A. Ait Lahcen, and S. Belfkih, “Big Data technologies: A survey,” J. King Saud Univ. - Comput. Inf. Sci., vol. 30, no. 4, pp. 431–448, Oct. 2018. https://doi.org/10.1016/j.jksuci.2017.06.001
  9. A. Purnomo, M. A. Barata, M. A. Soeleman, and F. Alzami, “Adding feature selection on Naïve Bayes to increase accuracy on classification heart attack disease,” J. Phys. Conf. Ser., vol. 1511, p. 012001, Apr. 2020. https://doi.org/10.1088/1742-6596/1511/1/012001
  10. F. Alzami, E. D. Udayanti, D. P. Prabowo, and R. A. Megantara, “Document Preprocessing with TF-IDF to Improve the Polarity Classification Performance of Unstructured Sentiment Analysis,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, pp. 235–242, Aug. 2020. https://doi.org/10.22219/kinetik.v5i3.1066
  11. Purwanto, Sunardi, F. T. Julfia, and A. Paramananda, “Hybrid model of ARIMA-linear trend model for tourist arrivals prediction model in Surakarta City, Indonesia,” in AIP Conference Proceedings, 2019, vol. 2114, p. 060010. https://doi.org/10.1063/1.5112481
  12. P. X. Xiang Liu, “Feature Selection using Bootstrapped ROC Curves,” J. Proteomics Bioinform., vol. s9, 2014.
  13. A. Bommert, X. Sun, B. Bischl, J. Rahnenführer, and M. Lang, “Benchmark for filter methods for feature selection in high-dimensional classification data,” Comput. Stat. Data Anal., vol. 143, p. 106839, Mar. 2020. https://doi.org/10.1016/j.csda.2019.106839
  14. E. B. Nkemnole and O. Abass, “A t-distribution based particle filter for univariate and multivariate stochastic volatility models,” J. Niger. Math. Soc., vol. 34, no. 2, pp. 227–242, Aug. 2015. http://dx.doi.org/10.1016%2Fj.jnnms.2014.11.002
  15. A. De Caigny, K. Coussement, and K. W. De Bock, “A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees,” Eur. J. Oper. Res., vol. 269, no. 2, pp. 760–772, Sep. 2018. https://doi.org/10.1016/j.ejor.2018.02.009
  16. M. C. E. Simsekler, A. Qazi, M. A. Alalami, S. Ellahham, and A. Ozonoff, “Evaluation of patient safety culture using a random forest algorithm,” Reliab. Eng. Syst. Saf., vol. 204, p. 107186, Dec. 2020. https://doi.org/10.1016/j.ress.2020.107186
  17. M. Kuhn and K. Johnson, Applied predictive modeling. New York, NY: Springer New York, 2013.
  18. A. Fernández, S. García, M. Galar, R. C. Prati, B. Krawczyk, and F. Herrera, Learning from Imbalanced Data Sets. Cham: Springer International Publishing, 2018.
  19. S. L. Salzberg, “C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993,” Mach. Learn., vol. 16, no. 3, pp. 235–240, Sep. 1994. https://doi.org/10.1007/BF00993309
  20. L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001. https://doi.org/10.1023/A:1010933404324
Read More

References


P. Altıok, “Applicable vision, mission and the effects of strategic management on crisis resolve,” Procedia - Soc. Behav. Sci., vol. 24, pp. 61–71, 2011. https://doi.org/10.1016/j.sbspro.2011.09.057

A. A. Davidescu, S.-A. Apostu, A. Paul, and I. Casuneanu, “Work Flexibility, Job Satisfaction, and Job Performance among Romanian Employees—Implications for Sustainable Human Resource Management,” Sustainability, vol. 12, no. 15, p. 6086, Jul. 2020. https://doi.org/10.3390/su12156086

S. M. Hamidi, “Performance Appraisal and Its Effects on Employees Motivation: A Case Study of Afghan Wireless Communications in Kabul,” SSRN Electron. J., 2019. https://dx.doi.org/10.2139/ssrn.3426851

V. V. Saradhi and G. K. Palshikar, “Employee churn prediction,” Expert Syst. Appl., vol. 38, no. 3, pp. 1999–2006, Mar. 2011. https://doi.org/10.1016/j.eswa.2010.07.134

V. Shapoval, “Organizational injustice and emotional labor in the hospitality industry: A theoretical review,” Int. J. Hosp. Manag., vol. 83, pp. 56–64, Oct. 2019. https://doi.org/10.1016/j.ijhm.2019.04.002

K. Haldorai, W. G. Kim, S. G. Pillai, T. (Eliot) Park, and K. Balasubramanian, “Factors affecting hotel employees’ attrition and turnover: Application of pull-push-mooring framework,” Int. J. Hosp. Manag., vol. 83, pp. 46–55, Oct. 2019. https://doi.org/10.1016/j.ijhm.2019.04.003

D. J. Madigan and L. E. Kim, “Towards an understanding of teacher attrition: A meta-analysis of burnout, job satisfaction, and teachers’ intentions to quit,” Teach. Teach. Educ., vol. 105, p. 103425, Sep. 2021. https://doi.org/10.1016/j.tate.2021.103425

A. Oussous, F.-Z. Benjelloun, A. Ait Lahcen, and S. Belfkih, “Big Data technologies: A survey,” J. King Saud Univ. - Comput. Inf. Sci., vol. 30, no. 4, pp. 431–448, Oct. 2018. https://doi.org/10.1016/j.jksuci.2017.06.001

A. Purnomo, M. A. Barata, M. A. Soeleman, and F. Alzami, “Adding feature selection on Naïve Bayes to increase accuracy on classification heart attack disease,” J. Phys. Conf. Ser., vol. 1511, p. 012001, Apr. 2020. https://doi.org/10.1088/1742-6596/1511/1/012001

F. Alzami, E. D. Udayanti, D. P. Prabowo, and R. A. Megantara, “Document Preprocessing with TF-IDF to Improve the Polarity Classification Performance of Unstructured Sentiment Analysis,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, pp. 235–242, Aug. 2020. https://doi.org/10.22219/kinetik.v5i3.1066

Purwanto, Sunardi, F. T. Julfia, and A. Paramananda, “Hybrid model of ARIMA-linear trend model for tourist arrivals prediction model in Surakarta City, Indonesia,” in AIP Conference Proceedings, 2019, vol. 2114, p. 060010. https://doi.org/10.1063/1.5112481

P. X. Xiang Liu, “Feature Selection using Bootstrapped ROC Curves,” J. Proteomics Bioinform., vol. s9, 2014.

A. Bommert, X. Sun, B. Bischl, J. Rahnenführer, and M. Lang, “Benchmark for filter methods for feature selection in high-dimensional classification data,” Comput. Stat. Data Anal., vol. 143, p. 106839, Mar. 2020. https://doi.org/10.1016/j.csda.2019.106839

E. B. Nkemnole and O. Abass, “A t-distribution based particle filter for univariate and multivariate stochastic volatility models,” J. Niger. Math. Soc., vol. 34, no. 2, pp. 227–242, Aug. 2015. http://dx.doi.org/10.1016%2Fj.jnnms.2014.11.002

A. De Caigny, K. Coussement, and K. W. De Bock, “A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees,” Eur. J. Oper. Res., vol. 269, no. 2, pp. 760–772, Sep. 2018. https://doi.org/10.1016/j.ejor.2018.02.009

M. C. E. Simsekler, A. Qazi, M. A. Alalami, S. Ellahham, and A. Ozonoff, “Evaluation of patient safety culture using a random forest algorithm,” Reliab. Eng. Syst. Saf., vol. 204, p. 107186, Dec. 2020. https://doi.org/10.1016/j.ress.2020.107186

M. Kuhn and K. Johnson, Applied predictive modeling. New York, NY: Springer New York, 2013.

A. Fernández, S. García, M. Galar, R. C. Prati, B. Krawczyk, and F. Herrera, Learning from Imbalanced Data Sets. Cham: Springer International Publishing, 2018.

S. L. Salzberg, “C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993,” Mach. Learn., vol. 16, no. 3, pp. 235–240, Sep. 1994. https://doi.org/10.1007/BF00993309

L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001. https://doi.org/10.1023/A:1010933404324

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 162 Download : 145

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License