Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 6, No. 4, November 2021
  4. Articles

Issue

Vol. 6, No. 4, November 2021

Issue Published : Nov 30, 2021
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Deep Convolutional Neural Network AlexNet and Squeezenet for Maize Leaf Diseases Image Classification

https://doi.org/10.22219/kinetik.v6i4.1335
Wahyudi Setiawan
Universitas Trunojoyo Madura
Abdul Ghofur
Universitas Trunojoyo Madura
Fika Hastarita Rachman
Universitas Trunojoyo Madura
Riries Rulaningtyas
Universitas Trunojoyo Madura

Corresponding Author(s) : Riries Rulaningtyas

riries-r@fst.unair.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 6, No. 4, November 2021
Article Published : Nov 30, 2021

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Maize productivity growth is expected to increase by the year. However, there are obstacles to achieving it. One of the causes is diseases attack. Generally, maize plant diseases are easily detected through the leaves. This article discusses maize leaf disease classification using computer vision with a convolutional neural network (CNN). It aims to compare the deep convolutional neural network (CNN) AlexNet and Squeezenet. The network also used optimization, stochastic gradient descent with momentum (SGDM). The dataset for this experiment was taken from PlantVillage with 3852 images with 4 classes i.e healthy, blight, spot, and rust. The data is divided into 3 parts: training, validation, and testing. Training and validation are 80%, the rest for testing. The results of training with cross-validation produce the best accuracy of 100% for AlexNet and Squeezenet. Furthermore, the best weights and biases are stored in the model for testing data classification. The recognition results using AlexNet showed 97.69% accuracy. While the results of Squeezenet 44.49% accuracy. From this experiment environment, it can be concluded that AlexNet is better than Squeezenet for maize leaf diseases classification.

Keywords

AlexNet Convolutional Neural Network image classification Maize Leaf Disease Squeezene
Setiawan, W., Ghofur, A., Hastarita Rachman, F., & Rulaningtyas, R. (2021). Deep Convolutional Neural Network AlexNet and Squeezenet for Maize Leaf Diseases Image Classification. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 6(4). https://doi.org/10.22219/kinetik.v6i4.1335
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. Kementrian Pertanian, “Produktivitas jagung menurut Provinsi 2014-2018,” 2019.
  2. Kementrian Pertanian, “Produksi jagung menurut Provinsi 2014-2018,” Kementrian Pertanian, 2019.
  3. M. S. Sudjono, “Penyakit Jagung dan Pengendaliannya,” 2015.
  4. M. D. Chauhan, R. Walia, C. Singh, and M. Deivakani, “Detection of Maize Disease Using Random Forest Classification Algorithm,” vol. 12, no. 9, pp. 715–720, 2021. https://doi.org/10.17762/turcomat.v12i9.3141
  5. F. Lin, D. Zhang, Y. Huang, X. Wang, and X. Chen, “Detection of corn and weed species by the combination of spectral, shape and textural features,” Sustain., vol. 9, no. 8, pp. 1–14, 2017. https://doi.org/10.3390/su9081335
  6. B. S. Kusumo, A. Heryana, O. Mahendra, and H. F. Pardede, “Machine Learning-based for Automatic Detection of Corn-Plant Diseases Using Image Processing,” 2018 Int. Conf. Comput. Control. Informatics its Appl. Recent Challenges Mach. Learn. Comput. Appl. IC3INA 2018 - Proceeding, pp. 93–97, 2019. https:// doi.org/10.1109/IC3INA.2018.8629507
  7. R. Meng et al., “Development of spectral disease indices for southern corn rust detection and severity classification,” Remote Sens., vol. 12, no. 19, pp. 1–16, 2020. https://doi.org/10.3390/rs12193233
  8. Y. Wei, L. Wei, T. Ji, and H. Hu, “A Novel Image Classification Approach for Maize Diseases Recognition,” Recent Adv. Electr. Electron. Eng., vol. 13, no. 3, pp. 331–339, 2020. https://doi.org/10.2174/2352096511666181003134208
  9. M. Syarief and W. Setiawan, “Convolutional neural network for maize leaf disease image classification,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 18, no. 3, pp. 1376–1381, 2020. http://dx.doi.org/10.12928/telkomnika.v18i3.14840
  10. E. L. Da Rocha, L. Rodrigues, and J. F. Mari, “Maize leaf disease classification using convolutional neural networks and hyperparameter optimization,” pp. 104–110, 2021. https://doi.org/10.5753/wvc.2020.13489
  11. X. Sun and J. Wei, “Identification of maize disease based on transfer learning,” J. Phys. Conf. Ser., vol. 1437, no. 1, 2020. https://doi.org/10.1088/1742-6596/1437/1/012080
  12. A. Waheed, M. Goyal, D. Gupta, A. Khanna, A. E. Hassanien, and H. M. Pandey, “An optimized dense convolutional neural network model for disease recognition and classification in corn leaf,” Comput. Electron. Agric., vol. 175, pp. 678–683, 2020. https://doi.org/10.1016/j.compag.2020.105456.
  13. D. Singh, N. Jain, P. Jain, P. Kayal, S. Kumawat, and N. Batra, “PlantDoc: A dataset for visual plant disease detection,” ACM Int. Conf. Proceeding Ser., no. January, pp. 249–253, 2020. https://doi.org/10.1145/3371158.3371196
  14. M. M. Micheni, M. Kinyua, B. Too, and C. Gakii, “Maize Leaf Disease Detection using Convolutional Neural Networks,” J. Appl. Comput. Sci. Math., vol. 15, no. 1, pp. 15–20, 2021. https://doi.org/10.4316/JACSM.202101002
  15. Y. Xu, B. Zhao, Y. Zhai, Q. Chen, and Y. Zhou, “Maize Diseases Identification Method Based on Multi-Scale Convolutional Global Pooling Neural Network,” IEEE Access, vol. 9, pp. 27959–27970, 2021. https://doi.org/10.1109/ACCESS.2021.3058267
  16. F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size,” in ICLR, 2017, pp. 1–13. https://doi.org/10.1007/978-3-319-24553-9
  17. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” pp. 1–9, 2012. https://doi.org/10.1145/3065386
  18. S. Ruder, “An overview of gradient descent optimization,” pp. 1–14, 2017.
  19. A. Ramezani-Kebrya, A. Khisti, and B. Liang, “On the Generalization of Stochastic Gradient Descent with Momentum,” no. 2015, pp. 1–36, 2021.
  20. J. Arun Pandian And G. GeetharamanI, “Data for: Identification of Plant Leaf Diseases Using a 9-layer Deep Convolutional Neural Network”, Mendeley Data, V1,” Mendeley, 2019.
  21. D. Berrar, “Cross-validation,” Encycl. Bioinforma. Comput. Biol. ABC Bioinforma., vol. 1–3, no. April, pp. 542–545, 2018. https://doi.org/10.1016/B978-0-12-809633-8.20349-X
  22. S. Raschka, “Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning,” 2018.
  23. Q. H. Nguyen et al., “Influence of data splitting on performance of machine learning models in prediction of shear strength of soil,” Math. Probl. Eng., vol. 2021, no. February, 2021. https://doi.org/10.1155/2021/4832864
  24. A. Rácz, D. Bajusz, and K. Héberger, “Effect of dataset size and train/test split ratios in qsar/qspr multiclass classification,” Molecules, vol. 26, no. 4, pp. 1–16, 2021. https://doi.org/10.3390/molecules26041111
  25. A. Ingle, “Plant Diseases Classification using ResNet-9,” Kaggle, 2019.
  26. Milan, “Maize Disease using VGG16 and ADAM,” Kaggle, 2019.
  27. Z. Ren, V. Pandit, K. Qian, and Z. Yang, “Deep Sequential Image Features on Acoustic Scene Classification,” in Detection and Classification of Acoustic Scenes and Events, 2017, no. November, pp. 1–6.
  28. L. N. Smith, “A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, momentum, and weight decay,” pp. 1–21, 2018.
  29. W. Setiawan, M. . Utoyo, and R. Rulaningtyas, “Classification of neovascularization using convolutional neural network model,” TELKOMNIKA, vol. 17, no. 1, pp. 463–473, 2019. https://doi.org/10.12928/TELKOMNIKA.v17i1.11604
  30. W. Setiawan and F. Damayanti, “Layers Modification of Convolutional Neural Network for Pneumonia Detection,” in Journal of Physics: Conference Series, 2020, vol. 1477, no. 5, pp. 1–9. https://doi.org/10.1088/1742-6596/1477/5/052055
  31. R. Acharya, “Corn Leaf Infection Dataset, Version 1,” Kaggle, 2020.
  32. K. Aurangzeb, F. Akmal, M. Khan, Muhammad Attique Sharif, and M. Y. Javed, “Advanced machine learning algorithm based system for crops leaf diseases recognition,” in 6th Conference on Data Science and Machine Learning Applications (CDMA), 2020. https://doi.org/10.1109/CDMA47397.2020.00031
  33. J. Wang and L. Perez, “The Effectiveness of Data Augmentation in Image Classification using Deep Learning,” 2017.
  34. D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” in ICLR, 2015, pp. 1–15. http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503
Read More

References


Kementrian Pertanian, “Produktivitas jagung menurut Provinsi 2014-2018,” 2019.

Kementrian Pertanian, “Produksi jagung menurut Provinsi 2014-2018,” Kementrian Pertanian, 2019.

M. S. Sudjono, “Penyakit Jagung dan Pengendaliannya,” 2015.

M. D. Chauhan, R. Walia, C. Singh, and M. Deivakani, “Detection of Maize Disease Using Random Forest Classification Algorithm,” vol. 12, no. 9, pp. 715–720, 2021. https://doi.org/10.17762/turcomat.v12i9.3141

F. Lin, D. Zhang, Y. Huang, X. Wang, and X. Chen, “Detection of corn and weed species by the combination of spectral, shape and textural features,” Sustain., vol. 9, no. 8, pp. 1–14, 2017. https://doi.org/10.3390/su9081335

B. S. Kusumo, A. Heryana, O. Mahendra, and H. F. Pardede, “Machine Learning-based for Automatic Detection of Corn-Plant Diseases Using Image Processing,” 2018 Int. Conf. Comput. Control. Informatics its Appl. Recent Challenges Mach. Learn. Comput. Appl. IC3INA 2018 - Proceeding, pp. 93–97, 2019. https:// doi.org/10.1109/IC3INA.2018.8629507

R. Meng et al., “Development of spectral disease indices for southern corn rust detection and severity classification,” Remote Sens., vol. 12, no. 19, pp. 1–16, 2020. https://doi.org/10.3390/rs12193233

Y. Wei, L. Wei, T. Ji, and H. Hu, “A Novel Image Classification Approach for Maize Diseases Recognition,” Recent Adv. Electr. Electron. Eng., vol. 13, no. 3, pp. 331–339, 2020. https://doi.org/10.2174/2352096511666181003134208

M. Syarief and W. Setiawan, “Convolutional neural network for maize leaf disease image classification,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 18, no. 3, pp. 1376–1381, 2020. http://dx.doi.org/10.12928/telkomnika.v18i3.14840

E. L. Da Rocha, L. Rodrigues, and J. F. Mari, “Maize leaf disease classification using convolutional neural networks and hyperparameter optimization,” pp. 104–110, 2021. https://doi.org/10.5753/wvc.2020.13489

X. Sun and J. Wei, “Identification of maize disease based on transfer learning,” J. Phys. Conf. Ser., vol. 1437, no. 1, 2020. https://doi.org/10.1088/1742-6596/1437/1/012080

A. Waheed, M. Goyal, D. Gupta, A. Khanna, A. E. Hassanien, and H. M. Pandey, “An optimized dense convolutional neural network model for disease recognition and classification in corn leaf,” Comput. Electron. Agric., vol. 175, pp. 678–683, 2020. https://doi.org/10.1016/j.compag.2020.105456.

D. Singh, N. Jain, P. Jain, P. Kayal, S. Kumawat, and N. Batra, “PlantDoc: A dataset for visual plant disease detection,” ACM Int. Conf. Proceeding Ser., no. January, pp. 249–253, 2020. https://doi.org/10.1145/3371158.3371196

M. M. Micheni, M. Kinyua, B. Too, and C. Gakii, “Maize Leaf Disease Detection using Convolutional Neural Networks,” J. Appl. Comput. Sci. Math., vol. 15, no. 1, pp. 15–20, 2021. https://doi.org/10.4316/JACSM.202101002

Y. Xu, B. Zhao, Y. Zhai, Q. Chen, and Y. Zhou, “Maize Diseases Identification Method Based on Multi-Scale Convolutional Global Pooling Neural Network,” IEEE Access, vol. 9, pp. 27959–27970, 2021. https://doi.org/10.1109/ACCESS.2021.3058267

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size,” in ICLR, 2017, pp. 1–13. https://doi.org/10.1007/978-3-319-24553-9

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” pp. 1–9, 2012. https://doi.org/10.1145/3065386

S. Ruder, “An overview of gradient descent optimization,” pp. 1–14, 2017.

A. Ramezani-Kebrya, A. Khisti, and B. Liang, “On the Generalization of Stochastic Gradient Descent with Momentum,” no. 2015, pp. 1–36, 2021.

J. Arun Pandian And G. GeetharamanI, “Data for: Identification of Plant Leaf Diseases Using a 9-layer Deep Convolutional Neural Network”, Mendeley Data, V1,” Mendeley, 2019.

D. Berrar, “Cross-validation,” Encycl. Bioinforma. Comput. Biol. ABC Bioinforma., vol. 1–3, no. April, pp. 542–545, 2018. https://doi.org/10.1016/B978-0-12-809633-8.20349-X

S. Raschka, “Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning,” 2018.

Q. H. Nguyen et al., “Influence of data splitting on performance of machine learning models in prediction of shear strength of soil,” Math. Probl. Eng., vol. 2021, no. February, 2021. https://doi.org/10.1155/2021/4832864

A. Rácz, D. Bajusz, and K. Héberger, “Effect of dataset size and train/test split ratios in qsar/qspr multiclass classification,” Molecules, vol. 26, no. 4, pp. 1–16, 2021. https://doi.org/10.3390/molecules26041111

A. Ingle, “Plant Diseases Classification using ResNet-9,” Kaggle, 2019.

Milan, “Maize Disease using VGG16 and ADAM,” Kaggle, 2019.

Z. Ren, V. Pandit, K. Qian, and Z. Yang, “Deep Sequential Image Features on Acoustic Scene Classification,” in Detection and Classification of Acoustic Scenes and Events, 2017, no. November, pp. 1–6.

L. N. Smith, “A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, momentum, and weight decay,” pp. 1–21, 2018.

W. Setiawan, M. . Utoyo, and R. Rulaningtyas, “Classification of neovascularization using convolutional neural network model,” TELKOMNIKA, vol. 17, no. 1, pp. 463–473, 2019. https://doi.org/10.12928/TELKOMNIKA.v17i1.11604

W. Setiawan and F. Damayanti, “Layers Modification of Convolutional Neural Network for Pneumonia Detection,” in Journal of Physics: Conference Series, 2020, vol. 1477, no. 5, pp. 1–9. https://doi.org/10.1088/1742-6596/1477/5/052055

R. Acharya, “Corn Leaf Infection Dataset, Version 1,” Kaggle, 2020.

K. Aurangzeb, F. Akmal, M. Khan, Muhammad Attique Sharif, and M. Y. Javed, “Advanced machine learning algorithm based system for crops leaf diseases recognition,” in 6th Conference on Data Science and Machine Learning Applications (CDMA), 2020. https://doi.org/10.1109/CDMA47397.2020.00031

J. Wang and L. Perez, “The Effectiveness of Data Augmentation in Image Classification using Deep Learning,” 2017.

D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” in ICLR, 2015, pp. 1–15. http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 190 Download : 190

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License