Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 6, No. 2, May 2021
  4. Articles

Issue

Vol. 6, No. 2, May 2021

Issue Published : May 31, 2021
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Classification of Human Activity Recognition Utilizing Smartphone Data of CNN-LSTM

https://doi.org/10.22219/kinetik.v6i2.1319
Widya Rizka Ulul Fadilah
Universitas Muhammadiyah Malang
Wahyu Andhyka Kusuma
Universitas Muhammadiyah Malang
Agus Eko Minarno
Universitas Muhammadiyah Malang
Yuda Munarko
Universitas Muhammadiyah Malang

Corresponding Author(s) : Yuda Munarko

yuda@umm.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 6, No. 2, May 2021
Article Published : May 31, 2021

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Human activity recognition has been applied in various areas of life by utilizing the gyroscope and accelerometer sensors embedded in smartphones. One of the functions of recognizing human activities is by understanding the pattern of human activity, thereby minimizing the possibility of unexpected incidents. This study classified of human activity recognition through CNN-LSTM on the UCI HAR dataset by applying the divide and conquer algorithm. This study additionally employs tuning hyperparameter to obtain the best accuracy value from the parameters and the proposed architecture. From the test results with the CNN-LSTM method, the accuracy rate for dynamic activity is 99.35%, for static activity is 96.08%, and the combination of the two models is 97.62%.

Keywords

Classification, Human Activity Recognition, CNN-LSTM, Hypermeter, Divide, Conquer
Fadilah, W. R. U., Kusuma, W. A. ., Minarno, A. E., & Munarko, Y. (2021). Classification of Human Activity Recognition Utilizing Smartphone Data of CNN-LSTM. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 6(2). https://doi.org/10.22219/kinetik.v6i2.1319
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. M. Danuri, “Perkembangan dan Transformasi Teknologi Digital,” infocam, vol. XV, no. II, pp. 116–123, 2019.
  2. GE Purna Sastriya, DC Khrisne, and Made Surdarma, “Aplikasi Asisten Untuk Lansia Dengan Memanfaatkan Smartphone Berbasis Android,” SINTECH (Science Inf. Technol. J., vol. 2, no. 2, pp. 63–70, 2019. https://doi.org/10.31598/sintechjournal.v2i2.315
  3. O. Ockikiriyanto, " Rancang Bangun Tempat Tidur Pasien Otomatis Dengan Sensor Accelerometer Gyroscope Untuk Mengatur Keseimbangan Berbasis Mikrokontroler Arduino," Cyclotron, vol. 2, no. 2, 2019. https://doi.org/10.30651/cl.v2i2.3256
  4. Haniah Mahmudah, Okkie Puspitorini, Nur Adi Siswandari, Ari Wijayanti, and Eliya Alfatekha, " Metode Naive Bayes Classifier – Smoothing pada Sensor Smartphone untuk Klasifikasi Aktivitas Pengendara," J. Nas. Tech. Electrical and Technol. inf., vol. 9, no. 3, pp. 268–277, 2020. https://doi.org/10.22146/.v9i3.382
  5. WS Lima, E. Souto, K. El-Khatib, R. Jalali, and J. Gama, “Human activity recognition using inertial sensors in a smartphone: An overview,” Sensors (Switzerland), vol. 19, no. 14, pp. 14–16, 2019. https://doi.org/10.3390/s19143213
  6. N. Cruz Silva, J. Mendes-Moreira, and P. Menezes, “Features Selection for Human Activity Recognition with iPhone Inertial Sensors,” Adv. Arti. Intell. 16th Port. conf. Arti. Intel., no. September, pp. 560–570, 2013.
  7. IA Bustoni, I. Hidayatulloh, AM Ningtyas, A. Purwaningsih, and SN Azhari, “Classification methods performance on human activity recognition,” J. Phys. conf. Ser., vol. 1456, no. 1, 2020. https://doi.org/10.1088/1742-6596/1456/1/012027
  8. YA Kurniawan, " Klasifikasi Static Dan Dynamic Activity Pada Human Activity Recognition Dataset Menggunakan Convolutional Neural Network," Universitas Muhammadiyah Malang, 2020.
  9. M. Ullah, H. Ullah, SD Khan, and FA Cheikh, “Stacked Lstm Network for Human Activity Recognition Using Smartphone Data,” Proc. - Euros. Work. vis. inf. Process. EUVIP, vol. 2019-Octob, pp. 175–180, 2019. https://doi.org/10.1109/EUVIP47703.2019.8946180
  10. R. Mutegeki and DS Han, “A CNN-LSTM Approach to Human Activity Recognition,” 2020 Int. conf. Arti. Intell. inf. comm. ICAIIC 2020, pp. 362–366, 2020. https://doi.org/10.1109/ICAIIC48513.2020.9065078
  11. A. Dhillon and GK Verma, “Convolutional neural network: a review of models, methodologies and applications to object detection,” prog. Arti. Intell., vol. 9, no. 2, pp. 85–112, 2020. https://doi.org/10.1007/s13748-019-00203-0
  12. MR Alwanda, PRR Kurniawan, and D. Alamsyah, “Implementasi Metode Convolutional Neural Network Menggunakan Arsitektur LeNet-5 untuk Pengenalan Doodle,” vol. 1, no. 1, 2020. https://doi.org/10.35957/algoritme.v1i1.434
  13. L. Alawneh, B. Mohsen, M. Al-Zinati, A. Shatnawi, and M. Al-Ayyoub, “A Comparison of Unidirectional and Bidirectional LSTM Networks for Human Activity Recognition,” 2020 IEEE Int. conf. Pervasive Computing. comm. Work. PerCom Work. 2020, 2020. https://doi.org/10.1109/PerComWorkshops48775.2020.9156264
  14. A. Rahmawati, "Klasifikasi Tumor Otak Menggunakan Convolutional Neural Network," 2020.
  15. A. Bimantara and TA Dina, "Klasifikasi Web Berbahaya Menggunakan Metode Logistic Regression," Annu. res. Semin., vol. 4, no. 1, pp. 173–177, 2019.
Read More

References


M. Danuri, “Perkembangan dan Transformasi Teknologi Digital,” infocam, vol. XV, no. II, pp. 116–123, 2019.

GE Purna Sastriya, DC Khrisne, and Made Surdarma, “Aplikasi Asisten Untuk Lansia Dengan Memanfaatkan Smartphone Berbasis Android,” SINTECH (Science Inf. Technol. J., vol. 2, no. 2, pp. 63–70, 2019. https://doi.org/10.31598/sintechjournal.v2i2.315

O. Ockikiriyanto, " Rancang Bangun Tempat Tidur Pasien Otomatis Dengan Sensor Accelerometer Gyroscope Untuk Mengatur Keseimbangan Berbasis Mikrokontroler Arduino," Cyclotron, vol. 2, no. 2, 2019. https://doi.org/10.30651/cl.v2i2.3256

Haniah Mahmudah, Okkie Puspitorini, Nur Adi Siswandari, Ari Wijayanti, and Eliya Alfatekha, " Metode Naive Bayes Classifier – Smoothing pada Sensor Smartphone untuk Klasifikasi Aktivitas Pengendara," J. Nas. Tech. Electrical and Technol. inf., vol. 9, no. 3, pp. 268–277, 2020. https://doi.org/10.22146/.v9i3.382

WS Lima, E. Souto, K. El-Khatib, R. Jalali, and J. Gama, “Human activity recognition using inertial sensors in a smartphone: An overview,” Sensors (Switzerland), vol. 19, no. 14, pp. 14–16, 2019. https://doi.org/10.3390/s19143213

N. Cruz Silva, J. Mendes-Moreira, and P. Menezes, “Features Selection for Human Activity Recognition with iPhone Inertial Sensors,” Adv. Arti. Intell. 16th Port. conf. Arti. Intel., no. September, pp. 560–570, 2013.

IA Bustoni, I. Hidayatulloh, AM Ningtyas, A. Purwaningsih, and SN Azhari, “Classification methods performance on human activity recognition,” J. Phys. conf. Ser., vol. 1456, no. 1, 2020. https://doi.org/10.1088/1742-6596/1456/1/012027

YA Kurniawan, " Klasifikasi Static Dan Dynamic Activity Pada Human Activity Recognition Dataset Menggunakan Convolutional Neural Network," Universitas Muhammadiyah Malang, 2020.

M. Ullah, H. Ullah, SD Khan, and FA Cheikh, “Stacked Lstm Network for Human Activity Recognition Using Smartphone Data,” Proc. - Euros. Work. vis. inf. Process. EUVIP, vol. 2019-Octob, pp. 175–180, 2019. https://doi.org/10.1109/EUVIP47703.2019.8946180

R. Mutegeki and DS Han, “A CNN-LSTM Approach to Human Activity Recognition,” 2020 Int. conf. Arti. Intell. inf. comm. ICAIIC 2020, pp. 362–366, 2020. https://doi.org/10.1109/ICAIIC48513.2020.9065078

A. Dhillon and GK Verma, “Convolutional neural network: a review of models, methodologies and applications to object detection,” prog. Arti. Intell., vol. 9, no. 2, pp. 85–112, 2020. https://doi.org/10.1007/s13748-019-00203-0

MR Alwanda, PRR Kurniawan, and D. Alamsyah, “Implementasi Metode Convolutional Neural Network Menggunakan Arsitektur LeNet-5 untuk Pengenalan Doodle,” vol. 1, no. 1, 2020. https://doi.org/10.35957/algoritme.v1i1.434

L. Alawneh, B. Mohsen, M. Al-Zinati, A. Shatnawi, and M. Al-Ayyoub, “A Comparison of Unidirectional and Bidirectional LSTM Networks for Human Activity Recognition,” 2020 IEEE Int. conf. Pervasive Computing. comm. Work. PerCom Work. 2020, 2020. https://doi.org/10.1109/PerComWorkshops48775.2020.9156264

A. Rahmawati, "Klasifikasi Tumor Otak Menggunakan Convolutional Neural Network," 2020.

A. Bimantara and TA Dina, "Klasifikasi Web Berbahaya Menggunakan Metode Logistic Regression," Annu. res. Semin., vol. 4, no. 1, pp. 173–177, 2019.

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 136 Download : 148

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License