Issue
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Classification of Human Activity Recognition Utilizing Smartphone Data of CNN-LSTM
Corresponding Author(s) : Yuda Munarko
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 6, No. 2, May 2021
Abstract
Human activity recognition has been applied in various areas of life by utilizing the gyroscope and accelerometer sensors embedded in smartphones. One of the functions of recognizing human activities is by understanding the pattern of human activity, thereby minimizing the possibility of unexpected incidents. This study classified of human activity recognition through CNN-LSTM on the UCI HAR dataset by applying the divide and conquer algorithm. This study additionally employs tuning hyperparameter to obtain the best accuracy value from the parameters and the proposed architecture. From the test results with the CNN-LSTM method, the accuracy rate for dynamic activity is 99.35%, for static activity is 96.08%, and the combination of the two models is 97.62%.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Danuri, “Perkembangan dan Transformasi Teknologi Digital,” infocam, vol. XV, no. II, pp. 116–123, 2019.
- GE Purna Sastriya, DC Khrisne, and Made Surdarma, “Aplikasi Asisten Untuk Lansia Dengan Memanfaatkan Smartphone Berbasis Android,” SINTECH (Science Inf. Technol. J., vol. 2, no. 2, pp. 63–70, 2019. https://doi.org/10.31598/sintechjournal.v2i2.315
- O. Ockikiriyanto, " Rancang Bangun Tempat Tidur Pasien Otomatis Dengan Sensor Accelerometer Gyroscope Untuk Mengatur Keseimbangan Berbasis Mikrokontroler Arduino," Cyclotron, vol. 2, no. 2, 2019. https://doi.org/10.30651/cl.v2i2.3256
- Haniah Mahmudah, Okkie Puspitorini, Nur Adi Siswandari, Ari Wijayanti, and Eliya Alfatekha, " Metode Naive Bayes Classifier – Smoothing pada Sensor Smartphone untuk Klasifikasi Aktivitas Pengendara," J. Nas. Tech. Electrical and Technol. inf., vol. 9, no. 3, pp. 268–277, 2020. https://doi.org/10.22146/.v9i3.382
- WS Lima, E. Souto, K. El-Khatib, R. Jalali, and J. Gama, “Human activity recognition using inertial sensors in a smartphone: An overview,” Sensors (Switzerland), vol. 19, no. 14, pp. 14–16, 2019. https://doi.org/10.3390/s19143213
- N. Cruz Silva, J. Mendes-Moreira, and P. Menezes, “Features Selection for Human Activity Recognition with iPhone Inertial Sensors,” Adv. Arti. Intell. 16th Port. conf. Arti. Intel., no. September, pp. 560–570, 2013.
- IA Bustoni, I. Hidayatulloh, AM Ningtyas, A. Purwaningsih, and SN Azhari, “Classification methods performance on human activity recognition,” J. Phys. conf. Ser., vol. 1456, no. 1, 2020. https://doi.org/10.1088/1742-6596/1456/1/012027
- YA Kurniawan, " Klasifikasi Static Dan Dynamic Activity Pada Human Activity Recognition Dataset Menggunakan Convolutional Neural Network," Universitas Muhammadiyah Malang, 2020.
- M. Ullah, H. Ullah, SD Khan, and FA Cheikh, “Stacked Lstm Network for Human Activity Recognition Using Smartphone Data,” Proc. - Euros. Work. vis. inf. Process. EUVIP, vol. 2019-Octob, pp. 175–180, 2019. https://doi.org/10.1109/EUVIP47703.2019.8946180
- R. Mutegeki and DS Han, “A CNN-LSTM Approach to Human Activity Recognition,” 2020 Int. conf. Arti. Intell. inf. comm. ICAIIC 2020, pp. 362–366, 2020. https://doi.org/10.1109/ICAIIC48513.2020.9065078
- A. Dhillon and GK Verma, “Convolutional neural network: a review of models, methodologies and applications to object detection,” prog. Arti. Intell., vol. 9, no. 2, pp. 85–112, 2020. https://doi.org/10.1007/s13748-019-00203-0
- MR Alwanda, PRR Kurniawan, and D. Alamsyah, “Implementasi Metode Convolutional Neural Network Menggunakan Arsitektur LeNet-5 untuk Pengenalan Doodle,” vol. 1, no. 1, 2020. https://doi.org/10.35957/algoritme.v1i1.434
- L. Alawneh, B. Mohsen, M. Al-Zinati, A. Shatnawi, and M. Al-Ayyoub, “A Comparison of Unidirectional and Bidirectional LSTM Networks for Human Activity Recognition,” 2020 IEEE Int. conf. Pervasive Computing. comm. Work. PerCom Work. 2020, 2020. https://doi.org/10.1109/PerComWorkshops48775.2020.9156264
- A. Rahmawati, "Klasifikasi Tumor Otak Menggunakan Convolutional Neural Network," 2020.
- A. Bimantara and TA Dina, "Klasifikasi Web Berbahaya Menggunakan Metode Logistic Regression," Annu. res. Semin., vol. 4, no. 1, pp. 173–177, 2019.
References
M. Danuri, “Perkembangan dan Transformasi Teknologi Digital,” infocam, vol. XV, no. II, pp. 116–123, 2019.
GE Purna Sastriya, DC Khrisne, and Made Surdarma, “Aplikasi Asisten Untuk Lansia Dengan Memanfaatkan Smartphone Berbasis Android,” SINTECH (Science Inf. Technol. J., vol. 2, no. 2, pp. 63–70, 2019. https://doi.org/10.31598/sintechjournal.v2i2.315
O. Ockikiriyanto, " Rancang Bangun Tempat Tidur Pasien Otomatis Dengan Sensor Accelerometer Gyroscope Untuk Mengatur Keseimbangan Berbasis Mikrokontroler Arduino," Cyclotron, vol. 2, no. 2, 2019. https://doi.org/10.30651/cl.v2i2.3256
Haniah Mahmudah, Okkie Puspitorini, Nur Adi Siswandari, Ari Wijayanti, and Eliya Alfatekha, " Metode Naive Bayes Classifier – Smoothing pada Sensor Smartphone untuk Klasifikasi Aktivitas Pengendara," J. Nas. Tech. Electrical and Technol. inf., vol. 9, no. 3, pp. 268–277, 2020. https://doi.org/10.22146/.v9i3.382
WS Lima, E. Souto, K. El-Khatib, R. Jalali, and J. Gama, “Human activity recognition using inertial sensors in a smartphone: An overview,” Sensors (Switzerland), vol. 19, no. 14, pp. 14–16, 2019. https://doi.org/10.3390/s19143213
N. Cruz Silva, J. Mendes-Moreira, and P. Menezes, “Features Selection for Human Activity Recognition with iPhone Inertial Sensors,” Adv. Arti. Intell. 16th Port. conf. Arti. Intel., no. September, pp. 560–570, 2013.
IA Bustoni, I. Hidayatulloh, AM Ningtyas, A. Purwaningsih, and SN Azhari, “Classification methods performance on human activity recognition,” J. Phys. conf. Ser., vol. 1456, no. 1, 2020. https://doi.org/10.1088/1742-6596/1456/1/012027
YA Kurniawan, " Klasifikasi Static Dan Dynamic Activity Pada Human Activity Recognition Dataset Menggunakan Convolutional Neural Network," Universitas Muhammadiyah Malang, 2020.
M. Ullah, H. Ullah, SD Khan, and FA Cheikh, “Stacked Lstm Network for Human Activity Recognition Using Smartphone Data,” Proc. - Euros. Work. vis. inf. Process. EUVIP, vol. 2019-Octob, pp. 175–180, 2019. https://doi.org/10.1109/EUVIP47703.2019.8946180
R. Mutegeki and DS Han, “A CNN-LSTM Approach to Human Activity Recognition,” 2020 Int. conf. Arti. Intell. inf. comm. ICAIIC 2020, pp. 362–366, 2020. https://doi.org/10.1109/ICAIIC48513.2020.9065078
A. Dhillon and GK Verma, “Convolutional neural network: a review of models, methodologies and applications to object detection,” prog. Arti. Intell., vol. 9, no. 2, pp. 85–112, 2020. https://doi.org/10.1007/s13748-019-00203-0
MR Alwanda, PRR Kurniawan, and D. Alamsyah, “Implementasi Metode Convolutional Neural Network Menggunakan Arsitektur LeNet-5 untuk Pengenalan Doodle,” vol. 1, no. 1, 2020. https://doi.org/10.35957/algoritme.v1i1.434
L. Alawneh, B. Mohsen, M. Al-Zinati, A. Shatnawi, and M. Al-Ayyoub, “A Comparison of Unidirectional and Bidirectional LSTM Networks for Human Activity Recognition,” 2020 IEEE Int. conf. Pervasive Computing. comm. Work. PerCom Work. 2020, 2020. https://doi.org/10.1109/PerComWorkshops48775.2020.9156264
A. Rahmawati, "Klasifikasi Tumor Otak Menggunakan Convolutional Neural Network," 2020.
A. Bimantara and TA Dina, "Klasifikasi Web Berbahaya Menggunakan Metode Logistic Regression," Annu. res. Semin., vol. 4, no. 1, pp. 173–177, 2019.