Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vo. 6, No. 3, August 2021
  4. Articles

Issue

Vo. 6, No. 3, August 2021

Issue Published : Aug 31, 2021
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Autonomous Visual Servoing for Alternately Working Arm Robots

https://doi.org/10.22219/kinetik.v6i3.1285
Tresna Dewi
Politeknik Negeri Sriwijaya
http://orcid.org/0000-0003-0239-1538
Rusdianasari Rusdianasari
Politeknik Negeri Sriwijaya
RD Kusumanto
Politeknik Negeri Sriwijaya
Siproni Siproni
Politeknik Negeri Sriwijaya
Fradina Septiarini
Politeknik Negeri Sriwijaya
M. Muhajir
Politeknik Negeri Sriwijaya

Corresponding Author(s) : Tresna Dewi

tresna_dewi@polsri.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vo. 6, No. 3, August 2021
Article Published : Aug 31, 2021

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Robots have infiltrated many aspects of human life up to this point, and with the term Industry 4.0, robots have even become the primary workforce in various factories. This condition necessitates that the robots collaborate without clashing. This paper discusses the application of two arm robot manipulators working alternately in sorting agricultural products. The proposed method employs simple image processing to detect the object and becomes the input to the system to control the robots. The effectiveness of the proposed method is enhanced by the application of a Fuzzy Logic Controller to smoothen robots’ joints motions. The average time required by the robot to finish their task from detecting to returning to standby position is 11.76 s for green tomatoes and 12.86 s for red tomatoes. The experimental results show that the proposed method is effective in controlling two robots to pick and place agricultural products using visual servoing.

Keywords

Arm robot manipulator Collaborative Robot Image Processing Visual Servoing
Dewi, T., Rusdianasari, R., Kusumanto, R., Siproni, S., Septiarini, F., & Muhajir, M. (2021). Autonomous Visual Servoing for Alternately Working Arm Robots . Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 6(3). https://doi.org/10.22219/kinetik.v6i3.1285
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. Z. Gao, T. Wanyama, I. Singh, A. Gadhrri, and R. Schmidt, “From Industry 4.0 to Robotics 4.0 - a Conceptual Framework for Collaborative and Intelligent Robotic Systems,” Procedia Manufacturing., vol. 46, pp. 591-599, 2020. https://doi.org/10.1016/j.promfg.2020.03.085
  2. J. P. Vasconez, G. A. Kantor, and F. A. A. Cheein, Human–robot interaction in agriculture: A survey and current challenges,” Biosystems Engineering, Vol. 179, pp. 35-48, 2019. https://doi.org/10.1016/j.biosystemseng.2018.12.005.
  3. T. Dewi, P. Risma, Y. Oktarina, and M. Nawawi, “Tomato Harvesting Arm Robot Manipulator; a Pilot Project,” Journal of Physics: Conference Series, 1500, p 012003, Proc. 3rd FIRST, Palembang: Indonesia, 2020. https://doi.org/10.1088/1742-6596/1500/1/012003
  4. Z. Hou, Z. Li, T. Fadiji, and J. Fu,Soft, “Grasping Mechanism of Human Fingers for Tomato-picking Bionic Robots,” Computers and Electronics in Agriculture, Vol 182, 106010, 2021. https://doi.org/10.1016/j.compag.2021.106010
  5. J. Chen, H. Qiang, J. Wu, G. Xu, and Z. Wang, “Navigation Path Extraction for Greenhouse Cucumber-picking Robots Using the Prediction-point Hough Transform, Computers and Electronics in Agriculture,” Vol. 180, 105911, 2021. https://doi.org/10.1016/j.compag.2020.105911
  6. L. van Herck, P. Kurtser, L. Wittemans, and Y. Edan, “Crop Design for Improved Robotic Harvesting: a Case Study of Sweet Pepper Harvesting, Biosystems Engineering,” Vol 192, pp. 294-308, 2020. https://doi.org/10.1016/j.biosystemseng.2020.01.021
  7. Y. Xiong, C. Peng, L. Grimstad, P. J. From, and V. Isler, "Development and Field Evaluation of a Strawberry Harvesting Robot with a Cable-driven Gripper," Computers and Electronics in Agriculture, Vol. 157, pp. 392-402, 2019. https://doi.org/10.1016/j.compag.2019.01.009
  8. T. Dewi, P. Risma, and Y. Oktarina, “Fruit Sorting Robot based on Color and Size for an Agricultural Product Packaging System,” Bulletin of Electrical Engineering, and Informatics (BEEI), vol. 9, no. 4, pp. 1438-1445, 2020. https://doi.org/10.11591/eei.v9i4.2353
  9. Yusuf M.D., Kusumanto, R.D., Oktarina, Y., Dewi, T., and Risma, P. (2018) ‘Blob Analysis for Fruit Recognition and Detection,’ Computer Engineering and Applications, Vol 7 No 1 pp. 23-32.
  10. N. M. Syahrian, P. Risma, and T. Dewi, “Vision-Based Pipe Monitoring Robot for Crack Detection using Canny Edge Detection Method as an Image Processing Technique,” Kinetik: Game Technology, Information System, Computer Network, Computing Electronics, and Control, Vol. 2, No. 4, pp. 243-250, 2017. https://doi.org/10.22219/kinetik.v2i4.243
  11. J. Lu, W. Suk, H. Gan, and X. Hu, “Immature Citrus Fruit Detection Based on Local Binary Pattern Feature and Hierarchical Contour Analysis,” Biosystems Engineering, vol. 171, pp. 78–90, 2018. https://doi.org/10.1016/j.biosystemseng.2018.04.009
  12. K. Ahlin, B. Joffe, A. Hu, G. McMurray, N. Sadegh, "Autonomous Leaf Picking Using Deep Learning and Visual-Servoing," IFAC-PapersOnLine, Vol. 49, No 16, pp. 177-183, 2016. https://doi.org/10.1016/j.ifacol.2016.10.033
  13. J. R. Sanchez-Lopez, A. Marin-Hernandez, E. R. Palacios-Hernandez, H. V. Rios-Figueroa, L. F. Marin-Urias, "A Real-time 3D Pose Based Visual Servoing Implementation for an Autonomous Mobile Robot Manipulator, Procedia Technology, Vol. 7, pp. 416-423, 2013. https://doi.org/10.1016/j.protcy.2013.04.052
  14. M. Allen, E. Westcoat, and L. Mears, "Optimal Path Planning for Image Based Visual Servoing," Procedia Manufacturing, Vol. 39, pp. 325-333, 2019. https://doi.org/10.1016/j.promfg.2020.01.364
  15. X. Ling, Y. Zhao, L. Gong, C. Liu, and T. Wang, "Dual-arm Cooperation and Implementing for Robotic Harvesting Tomato Using Binocular Vision," Robotics and Autonomous Systems, Vol. 114, pp. 134-143, 2019. https://doi.org/10.1016/j.robot.2019.01.019
  16. G. Foresi, A. Freddi, V. Kyrki, A. Monteriù, R. Muthusamy, D. Ortenzi, D. Proietti Pagnotta, "An Avoidance Control Strategy for Joint-Position Limits of Dual-Arm Robots," IFAC-PapersOnLine, Vol. 50, No 1, pp. 1056-1061, 2017. https://doi.org/10.1016/j.ifacol.2017.08.217.
  17. M. Bueno-López, and M. A. Arteaga-Pérez, "Fuzzy Logic Control of a Robot Manipulator in 3d Based on Visual Servoing," IFAC Proceedings Volumes, Vol. 44, No. 1, pp. 14578-14583, 2011. https://doi.org/10.3182/20110828-6-IT-1002.03422
  18. T. Dewi, P. Risma, Y. Oktarina, and S. Muslimin, “Visual Servoing Design and Control for Agriculture Robot; a Review,” Proc. 2019 ICECOS, 2-4 Oct. 2018, Pangkal Pinang: Indonesia, 2018, pp. 57-62. https://doi.org/10.1109/ICECOS.2018.8605209
  19. A.H. Abdul Hafez, P. Mithun, V.V. Anurag, S.V. Shah, and K. Madhava Krishna, "Reactionless Visual Servoing of a Multi-arm Space Robot Combined with Other Manipulation Tasks," Robotics and Autonomous Systems, Vol. 91, pp. 1-10, 2017. https://doi.org/10.1016/j.robot.2016.12.010.
  20. Z. M .Bi, C. Luo, Z. Miao, B. Zhang, W. J. Zhang, and L. H. Wang, W. Chen, C. Wang, X. Wang, and R. Pfeifer, "Dynamic Modeling and Image-based Adaptive Visual Servoing of Cable-driven Soft Robotic Manipulator," IFAC Proceedings Volumes, Vol. 47, No. 3, pp. 11884-11889, 2014. https://doi.org/10.3182/20140824-6-ZA-1003.00300
  21. T. Dewi, Z. Mulya, P. Risma, and Y. Oktarina, “BLOB Analysis of an Automatic Vision Guided System for a Fruit Picking and Placing Robot,” International Journal of Computational Vision and Robotics, Vol. 11, No 3, pp. 315-326, 2021. https://doi.org/10.1504/IJCVR.2021.115161
  22. T. Dewi, N. Uchiyama, S. Sano, and H. Takahashi, “Swarm Robot Control for Human Services and Moving Rehabilitation by Sensor Fusion,” Journal of Robotics, 2014, ID: 278659, 11 pages, 2014. https://doi.org/10.1155/2014/278659
  23. R.Accorsi, A.Tufano, A.Gallo, F. G. Galizia, G. Cocchi, M. Ronzoni, A. Abbate, and R. Manzini, “An Application of Collaborative Robots in a Food Production Facility,” Procedia Manufacturing., Vol. 38, pp. 341-348, 2019. https://doi.org/10.1016/j.promfg.2020.01.044
  24. T. Dewi, C. Anggraini, P. Risma, Y. Oktarina, and Muslikhin, “Motion Control Analysis of Two Collaborative Arm Robots in Fruit Packaging System,” SINERGI Vol. 25, No. 2, pp. 217-226, 2021. http://doi.org/10.22441/sinergi.2021.2.013
  25. J. F. Buhl, R. Gronhoj, J. K. Jorgensen, G. Mateus, D. Pinto, J. K. Sorensen, S. Bogh, and D. Chrysostomou, “A Dual-arm Collaborative Robot System for the Smart Factories of the Future,” Procedia Manufacturing., vol. 38, pp. 333-340, 2019. https://doi.org/10.1016/j.promfg.2020.01.043
  26. Barnett, J., Duke, M., Au, C.K., Lim, S.H., (2020) ‘Work Distribution of Multiple Cartesian Robot Arms for Kiwifruit Harvesting,’ Computer and Electronics in Agriculture, Vol. 169, pp.105202. https://doi.org/10.1016/j.compag.2019.105202
  27. Y. Zhao, L. Gong, C. Liu, and Y. Huang, "Dual-arm Robot Design and Testing for Harvesting Tomato in Greenhouse," IFAC-PapersOnLine, Vol. 49, No 16, pp. 161-165, 2016. https://doi.org/10.1016/j.ifacol.2016.10.030
  28. V. Lippiello, B. Siciliano, and L. Villani, “Position-based Visual Servoing in Industrial Multi-arm Robotic Cells Using Multiple Cameras,” IFAC Proceeding Volumes, vol. 39, no. 15, pp. 43-48, 2006. https://doi.org/10.3182/20060906-3-IT-2910.00009
  29. Y. Huang, R. Chiba, T. Arai, T. Ueyama, and J. Ota, Robust Multi-robot Coordination in Pick-and-place Tasks Based on Part-dispatching Rules, Robotics and Autonomous Systems, Vol 64, pp. 70-83, 2015. https://doi.org/10.1016/j.robot.2014.10.018
  30. Y. Oktarina, F. Septiarini, T. Dewi, P. Risma, and M. Nawawi, “Fuzzy-PID Controller Design of 4 DOF Industrial Arm Robot Manipulator,” Computer Engineering and Application Journal, vol. 8, no. 2, pp. 123-136, 2019.
  31. T. Dewi, S. Nurmaini, P. Risma, Y. Oktarina, and M. Roriz, “Inverse Kinematic Analysis of 4 DOF Pick and Place Arm Robot Manipulator using Fuzzy Logic Controller,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 2, pp. 1376-1386, 2019. http://doi.org/10.11591/ijece.v10i2.pp1376-1386
  32. T. Dewi, P. Risma, and Y. Oktarina, “Fuzzy Logic Simulation as a Teaching-learning Media for Artificial Intelligence Class,” Journal of Automation Mobile Robotics and Intelligent Systems, vol. 12, no. 3, pp. 3-9, 2018. http://dx.doi.org/10.14313/JAMRIS_3-2018/13
  33. J. J. Craig, “Introduction to Robotics: Mechanics and Control”, 3rd Ed., Pearson, UK, 2004.
  34. M. W. Spong, S. Hutchinso, and M. Vidyasagar, “Robot Modeling and Control,” Hoboken, NJ: John Wiley & Sons, 2006. ISBN: 978-1-119-52404-5
Read More

References


Z. Gao, T. Wanyama, I. Singh, A. Gadhrri, and R. Schmidt, “From Industry 4.0 to Robotics 4.0 - a Conceptual Framework for Collaborative and Intelligent Robotic Systems,” Procedia Manufacturing., vol. 46, pp. 591-599, 2020. https://doi.org/10.1016/j.promfg.2020.03.085

J. P. Vasconez, G. A. Kantor, and F. A. A. Cheein, Human–robot interaction in agriculture: A survey and current challenges,” Biosystems Engineering, Vol. 179, pp. 35-48, 2019. https://doi.org/10.1016/j.biosystemseng.2018.12.005.

T. Dewi, P. Risma, Y. Oktarina, and M. Nawawi, “Tomato Harvesting Arm Robot Manipulator; a Pilot Project,” Journal of Physics: Conference Series, 1500, p 012003, Proc. 3rd FIRST, Palembang: Indonesia, 2020. https://doi.org/10.1088/1742-6596/1500/1/012003

Z. Hou, Z. Li, T. Fadiji, and J. Fu,Soft, “Grasping Mechanism of Human Fingers for Tomato-picking Bionic Robots,” Computers and Electronics in Agriculture, Vol 182, 106010, 2021. https://doi.org/10.1016/j.compag.2021.106010

J. Chen, H. Qiang, J. Wu, G. Xu, and Z. Wang, “Navigation Path Extraction for Greenhouse Cucumber-picking Robots Using the Prediction-point Hough Transform, Computers and Electronics in Agriculture,” Vol. 180, 105911, 2021. https://doi.org/10.1016/j.compag.2020.105911

L. van Herck, P. Kurtser, L. Wittemans, and Y. Edan, “Crop Design for Improved Robotic Harvesting: a Case Study of Sweet Pepper Harvesting, Biosystems Engineering,” Vol 192, pp. 294-308, 2020. https://doi.org/10.1016/j.biosystemseng.2020.01.021

Y. Xiong, C. Peng, L. Grimstad, P. J. From, and V. Isler, "Development and Field Evaluation of a Strawberry Harvesting Robot with a Cable-driven Gripper," Computers and Electronics in Agriculture, Vol. 157, pp. 392-402, 2019. https://doi.org/10.1016/j.compag.2019.01.009

T. Dewi, P. Risma, and Y. Oktarina, “Fruit Sorting Robot based on Color and Size for an Agricultural Product Packaging System,” Bulletin of Electrical Engineering, and Informatics (BEEI), vol. 9, no. 4, pp. 1438-1445, 2020. https://doi.org/10.11591/eei.v9i4.2353

Yusuf M.D., Kusumanto, R.D., Oktarina, Y., Dewi, T., and Risma, P. (2018) ‘Blob Analysis for Fruit Recognition and Detection,’ Computer Engineering and Applications, Vol 7 No 1 pp. 23-32.

N. M. Syahrian, P. Risma, and T. Dewi, “Vision-Based Pipe Monitoring Robot for Crack Detection using Canny Edge Detection Method as an Image Processing Technique,” Kinetik: Game Technology, Information System, Computer Network, Computing Electronics, and Control, Vol. 2, No. 4, pp. 243-250, 2017. https://doi.org/10.22219/kinetik.v2i4.243

J. Lu, W. Suk, H. Gan, and X. Hu, “Immature Citrus Fruit Detection Based on Local Binary Pattern Feature and Hierarchical Contour Analysis,” Biosystems Engineering, vol. 171, pp. 78–90, 2018. https://doi.org/10.1016/j.biosystemseng.2018.04.009

K. Ahlin, B. Joffe, A. Hu, G. McMurray, N. Sadegh, "Autonomous Leaf Picking Using Deep Learning and Visual-Servoing," IFAC-PapersOnLine, Vol. 49, No 16, pp. 177-183, 2016. https://doi.org/10.1016/j.ifacol.2016.10.033

J. R. Sanchez-Lopez, A. Marin-Hernandez, E. R. Palacios-Hernandez, H. V. Rios-Figueroa, L. F. Marin-Urias, "A Real-time 3D Pose Based Visual Servoing Implementation for an Autonomous Mobile Robot Manipulator, Procedia Technology, Vol. 7, pp. 416-423, 2013. https://doi.org/10.1016/j.protcy.2013.04.052

M. Allen, E. Westcoat, and L. Mears, "Optimal Path Planning for Image Based Visual Servoing," Procedia Manufacturing, Vol. 39, pp. 325-333, 2019. https://doi.org/10.1016/j.promfg.2020.01.364

X. Ling, Y. Zhao, L. Gong, C. Liu, and T. Wang, "Dual-arm Cooperation and Implementing for Robotic Harvesting Tomato Using Binocular Vision," Robotics and Autonomous Systems, Vol. 114, pp. 134-143, 2019. https://doi.org/10.1016/j.robot.2019.01.019

G. Foresi, A. Freddi, V. Kyrki, A. Monteriù, R. Muthusamy, D. Ortenzi, D. Proietti Pagnotta, "An Avoidance Control Strategy for Joint-Position Limits of Dual-Arm Robots," IFAC-PapersOnLine, Vol. 50, No 1, pp. 1056-1061, 2017. https://doi.org/10.1016/j.ifacol.2017.08.217.

M. Bueno-López, and M. A. Arteaga-Pérez, "Fuzzy Logic Control of a Robot Manipulator in 3d Based on Visual Servoing," IFAC Proceedings Volumes, Vol. 44, No. 1, pp. 14578-14583, 2011. https://doi.org/10.3182/20110828-6-IT-1002.03422

T. Dewi, P. Risma, Y. Oktarina, and S. Muslimin, “Visual Servoing Design and Control for Agriculture Robot; a Review,” Proc. 2019 ICECOS, 2-4 Oct. 2018, Pangkal Pinang: Indonesia, 2018, pp. 57-62. https://doi.org/10.1109/ICECOS.2018.8605209

A.H. Abdul Hafez, P. Mithun, V.V. Anurag, S.V. Shah, and K. Madhava Krishna, "Reactionless Visual Servoing of a Multi-arm Space Robot Combined with Other Manipulation Tasks," Robotics and Autonomous Systems, Vol. 91, pp. 1-10, 2017. https://doi.org/10.1016/j.robot.2016.12.010.

Z. M .Bi, C. Luo, Z. Miao, B. Zhang, W. J. Zhang, and L. H. Wang, W. Chen, C. Wang, X. Wang, and R. Pfeifer, "Dynamic Modeling and Image-based Adaptive Visual Servoing of Cable-driven Soft Robotic Manipulator," IFAC Proceedings Volumes, Vol. 47, No. 3, pp. 11884-11889, 2014. https://doi.org/10.3182/20140824-6-ZA-1003.00300

T. Dewi, Z. Mulya, P. Risma, and Y. Oktarina, “BLOB Analysis of an Automatic Vision Guided System for a Fruit Picking and Placing Robot,” International Journal of Computational Vision and Robotics, Vol. 11, No 3, pp. 315-326, 2021. https://doi.org/10.1504/IJCVR.2021.115161

T. Dewi, N. Uchiyama, S. Sano, and H. Takahashi, “Swarm Robot Control for Human Services and Moving Rehabilitation by Sensor Fusion,” Journal of Robotics, 2014, ID: 278659, 11 pages, 2014. https://doi.org/10.1155/2014/278659

R.Accorsi, A.Tufano, A.Gallo, F. G. Galizia, G. Cocchi, M. Ronzoni, A. Abbate, and R. Manzini, “An Application of Collaborative Robots in a Food Production Facility,” Procedia Manufacturing., Vol. 38, pp. 341-348, 2019. https://doi.org/10.1016/j.promfg.2020.01.044

T. Dewi, C. Anggraini, P. Risma, Y. Oktarina, and Muslikhin, “Motion Control Analysis of Two Collaborative Arm Robots in Fruit Packaging System,” SINERGI Vol. 25, No. 2, pp. 217-226, 2021. http://doi.org/10.22441/sinergi.2021.2.013

J. F. Buhl, R. Gronhoj, J. K. Jorgensen, G. Mateus, D. Pinto, J. K. Sorensen, S. Bogh, and D. Chrysostomou, “A Dual-arm Collaborative Robot System for the Smart Factories of the Future,” Procedia Manufacturing., vol. 38, pp. 333-340, 2019. https://doi.org/10.1016/j.promfg.2020.01.043

Barnett, J., Duke, M., Au, C.K., Lim, S.H., (2020) ‘Work Distribution of Multiple Cartesian Robot Arms for Kiwifruit Harvesting,’ Computer and Electronics in Agriculture, Vol. 169, pp.105202. https://doi.org/10.1016/j.compag.2019.105202

Y. Zhao, L. Gong, C. Liu, and Y. Huang, "Dual-arm Robot Design and Testing for Harvesting Tomato in Greenhouse," IFAC-PapersOnLine, Vol. 49, No 16, pp. 161-165, 2016. https://doi.org/10.1016/j.ifacol.2016.10.030

V. Lippiello, B. Siciliano, and L. Villani, “Position-based Visual Servoing in Industrial Multi-arm Robotic Cells Using Multiple Cameras,” IFAC Proceeding Volumes, vol. 39, no. 15, pp. 43-48, 2006. https://doi.org/10.3182/20060906-3-IT-2910.00009

Y. Huang, R. Chiba, T. Arai, T. Ueyama, and J. Ota, Robust Multi-robot Coordination in Pick-and-place Tasks Based on Part-dispatching Rules, Robotics and Autonomous Systems, Vol 64, pp. 70-83, 2015. https://doi.org/10.1016/j.robot.2014.10.018

Y. Oktarina, F. Septiarini, T. Dewi, P. Risma, and M. Nawawi, “Fuzzy-PID Controller Design of 4 DOF Industrial Arm Robot Manipulator,” Computer Engineering and Application Journal, vol. 8, no. 2, pp. 123-136, 2019.

T. Dewi, S. Nurmaini, P. Risma, Y. Oktarina, and M. Roriz, “Inverse Kinematic Analysis of 4 DOF Pick and Place Arm Robot Manipulator using Fuzzy Logic Controller,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 2, pp. 1376-1386, 2019. http://doi.org/10.11591/ijece.v10i2.pp1376-1386

T. Dewi, P. Risma, and Y. Oktarina, “Fuzzy Logic Simulation as a Teaching-learning Media for Artificial Intelligence Class,” Journal of Automation Mobile Robotics and Intelligent Systems, vol. 12, no. 3, pp. 3-9, 2018. http://dx.doi.org/10.14313/JAMRIS_3-2018/13

J. J. Craig, “Introduction to Robotics: Mechanics and Control”, 3rd Ed., Pearson, UK, 2004.

M. W. Spong, S. Hutchinso, and M. Vidyasagar, “Robot Modeling and Control,” Hoboken, NJ: John Wiley & Sons, 2006. ISBN: 978-1-119-52404-5

Author Biography

Tresna Dewi, Politeknik Negeri Sriwijaya

Scopus Profil

https://www.scopus.com/authid/detail.uri?authorId=56106827800

Google Scholar Profil

https://scholar.google.com/citations?user=Q36zLQsAAAAJ&hl=en

SINTA Profil

http://sinta2.ristekdikti.go.id/authors/detail?id=5973948&view=overview

Download this PDF file
PDF
Statistic
Read Counter : 236 Download : 157

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License