Issue
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Diagonal Based Feature Extraction and Backpropagation Neural Network in Handwritten Batak Toba Characters Recognition
Corresponding Author(s) : Elviawaty Muisa Zamzami
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 6, No. 2, May 2021
Abstract
Handwritten character recognition is considered a complex problem since one’s handwritten character has its characteristics. Data used for this research was a photo of handwritten or scanned handwritten. In this research, Backpropagation Neural Network (BPNN) was used to recognize handwritten Batak Toba character, wherein preprocessing stage feature extraction was done using Diagonal Based Feature Extraction (DBFE) to obtain feature value. Furthermore, the feature value will be used as an input to BPNN. The total number of data used was190 data, where 114 data was used for the training process and another 76 data was used for testing. From the testing process carried out, the accuracy obtained was 87,19 %.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. K. M. S. Azad Rabby, S. Haque, S. Abujar, and S. A. Hossain, “Ekushnet: Using convolutional neural network for Bangla handwritten recognition,” in Procedia Computer Science, Jan. 2018, vol. 143, pp. 603–610. https://doi.org/10.1016/j.procs.2018.10.437
- A. Junaidi, S. Vajda, and G. A. Fink, “Lampung - A new handwritten character benchmark: Database, labeling and recognition,” in ACM International Conference Proceeding Series, 2011, Pp. 1. https://doi.org/10.1145/2034617.2034632
- H. Fitriawan, Ariyanto, and H. Setiawan, “Neural Networks for Lampung Characters Handwritten Recognition,” in Proceedings - 6th International Conference on Computer and Communication Engineering: Innovative Technologies to Serve Humanity, ICCCE 2016, Dec. 2016, pp. 485–488. https://doi.org/10.1109/ICCCE.2016.107
- M. Suryani, E. Paulus, S. Hadi, U. A. Darsa, and J. C. Burie, “The Handwritten Sundanese Palm Leaf Manuscript Dataset from 15th Century,” in Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, Jul. 2017, vol. 1, pp. 796–800. https://doi.org/10.1109/ICDAR.2017.135
- H. Salsabila, E. Rachmawati, and F. Sthevanie, “Sundanese Aksara Recognition Using Histogram of Oriented Gradients,” in 2019 2nd International Seminar on Research of Information Technology and Intelligent Systems, ISRITI 2019, Dec. 2019, pp. 253–258. https://doi.org/10.1109/ISRITI48646.2019.9034589
- M. W. A. Kesiman, S. Prum, J. C. Burie, and J. M. Ogier, “Study on feature extraction methods for character recognition of Balinese script on palm leaf manuscript images,” in Proceedings - International Conference on Pattern Recognition, Jan. 2016, vol. 0, pp. 4017–4022. https://doi.org/10.1109/ICPR.2016.7900262
- A. Hidayat, I. Nurtanio, and Z. Tahir, “Segmentation and recognition of handwritten Lontara characters using convolutional neural network,” in 2019 International Conference on Information and Communications Technology, ICOIACT 2019, Jul. 2019, pp. 157–161. https://doi.org/10.1109/ICOIACT46704.2019.8938445
- N. T. B. Pasaribu and M. J. Hasugian, “Feature Extraction Comparison in Handwriting Recognition of Batak Toba Alphabet,” IJITEE (International J. Inf. Technol. Electr. Eng., vol. 1, no. 3, p. 86, Jan. 2018. https://doi.org/10.22146/ijitee.31969
- A. Priya, S. Mishra, S. Raj, S. Mandal, and S. Datta, “Online and offline character recognition: A survey,” in International Conference on Communication and Signal Processing, ICCSP 2016, Nov. 2016, pp. 967–970. https://doi.org/10.1109/ICCSP.2016.7754291
- X. Y. Zhang, Y. Bengio, and C. L. Liu, “Online and offline handwritten Chinese character recognition: A comprehensive study and new benchmark,” Pattern Recognit., vol. 61, pp. 348–360, Jan. 2017. https://doi.org/10.1016/j.patcog.2016.08.005
- C. L. Liu, F. Yin, D. H. Wang, and Q. F. Wang, “Online and offline handwritten Chinese character recognition: Benchmarking on new databases,” Pattern Recognit., vol. 46, no. 1, pp. 155–162, Jan. 2013. https://doi.org/10.1016/j.patcog.2012.06.021
- N. Arica and F. T. Yarman-Vural, “An overview of character recognition focused on off-line handwriting,” IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, vol. 31, no. 2. pp. 216–233, May 2001. https://doi.org/10.1109/5326.941845
- S. Sitinjak, “Pengenalan Tulisan Tangan Aksara Batak Toba Menggunakan Backpropagation,” Universitas Atma Jaya, Yogyakarta, 2012.
- Khairunisa, “Pengenalan Tulisan tangan Latin Bersambung Menggunakan Jaringan Saraf Tiruan Propagasi Balik,” 2012.
- N. Putra, “Peningkatan Fiture Jaringan Propagasi Balik pada Pengenalan Angka Tulisan Tangan Menggunakan Metode Zoning dan Diagonal Base Feature Extraction,” Dunia Teknol. Inf., vol. I, no. 1, 2012.
- N. Theresia Br Pasaribu and M. Jimmy Hasugian, “Pengenalan Tulisan Tangan Ina ni surat Aksara Batak Toba,” 2015.
- N. T. B. Pasaribu and M. J. Hasugian, “Noise removal on Batak Toba handwritten script using Artificial Neural Network,” in Proceedings - 2016 3rd International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE 2016, Apr. 2017, pp. 373–376. https://doi.org/10.1109/ICITACEE.2016.7892474
- P. Romulus, Y. Maraden, P. D. Purnamasari, and A. A. P. Ratna, “An analysis of optical character recognition implementation for ancient Batak characters using K-nearest neighbors principle,” in 14th International Conference on QiR (Quality in Research), QiR 2015 - In conjunction with 4th Asian Symposium on Material Processing, ASMP 2015 and International Conference in Saving Energy in Refrigeration and Air Conditioning, ICSERA 2015, Jan. 2016, pp. 47–50. https://doi.org/10.1109/QiR.2015.7374893
- S. Afroge, B. Ahmed, and F. Mahmud, “Optical character recognition using back propagation neural network,” Mar. 2017. https://doi.org/10.1109/ICECTE.2016.7879615
- S. R. Zanwar, A. S. Narote, and S. P. Narote, “English Character Recognition Using Robust Back Propagation Neural Network,” in Communications in Computer and Information Science, Dec. 2019, vol. 1037, pp. 216–227. https://doi.org/10.1007/978-981-13-9187-3_20
- D. P. Chandra and A. Suryadibrata, “Implementasi Jaringan Saraf Tiruan Backpropagation untuk Pengenalan Karakter pada Dokumen Tercetak,” Ultim. Comput., vol. XI, no. 2, Pp. 81, 2019.
- M. A. Muchtar et al., “Digitization of Batak Manuscripts Using Methods Learning Vector Quantization (LVQ),” in IOP Conference Series: Materials Science and Engineering, May 2020, vol. 851, no. 1, Pp. 012066. https://doi.org/10.1088/1757-899X/851/1/012066
- S. Vijayprasath, “A Simple Feature Extraction Method for Analysis of Hand Written Characters,” J. Phys. Conf. Ser., vol. 1717, no. 1, p. 012066, Jan. 2021. https://doi.org/10.1088/1742-6596/1717/1/012066
- F. Westphal, N. Lavesson, and H. Grahn, “Document image binarization using recurrent neural networks,” in Proceedings - 13th IAPR International Workshop on Document Analysis Systems, DAS 2018, Jun. 2018, pp. 263–268. https://doi.org/10.1109/DAS.2018.71
- A. Choudhary, R. Rishi, and S. Ahlawat, “Off-line Handwritten Character Recognition Using Features Extracted from Binarization Technique,” AASRI Procedia, vol. 4, pp. 306–312, Jan. 2013. https://doi.org/10.1016/j.aasri.2013.10.045
- P. Puneet and N. Garg, “Binarization Techniques used for Grey Scale Images,” Int. J. Comput. Appl., vol. 71, no. 1, pp. 8–11, Jun. 2013. https://doi.org/10.5120/12320-8533
- L. Ben Boudaoud, A. Sider, and A. Tari, “A new thinning algorithm for binary images,” Aug. 2015. https://doi.org/10.1109/CEIT.2015.7233099
- D. Phillips, Image Processing in C Second Edition. R & D Publications, 1994.
- J. Pradeep, E. Srinivasan, and S. Himavathi, “Diagonal Based Feature Extraction for Handwritten Alphabets Recognition System Using Neural Network,” Int. J. Comput. Sci. Inf. Technol., vol. 3, no. 1, 2011. https://doi.org/10.5121/ijcsit.2011.3103
- M. A. Firmansyah, K. N. Ramadhani, and A. Arifianto, “Pengenalan Angka Tulisan Tangan Menggunakan Diagonal Feature Extraction dan Artificial Neural Network Multilayer Perceptron,” Indones. J. Comput., vol. 3, no. 1, pp. 65, May 2018. https://doi.org/10.21108/INDOJC.2018.3.1.214
References
A. K. M. S. Azad Rabby, S. Haque, S. Abujar, and S. A. Hossain, “Ekushnet: Using convolutional neural network for Bangla handwritten recognition,” in Procedia Computer Science, Jan. 2018, vol. 143, pp. 603–610. https://doi.org/10.1016/j.procs.2018.10.437
A. Junaidi, S. Vajda, and G. A. Fink, “Lampung - A new handwritten character benchmark: Database, labeling and recognition,” in ACM International Conference Proceeding Series, 2011, Pp. 1. https://doi.org/10.1145/2034617.2034632
H. Fitriawan, Ariyanto, and H. Setiawan, “Neural Networks for Lampung Characters Handwritten Recognition,” in Proceedings - 6th International Conference on Computer and Communication Engineering: Innovative Technologies to Serve Humanity, ICCCE 2016, Dec. 2016, pp. 485–488. https://doi.org/10.1109/ICCCE.2016.107
M. Suryani, E. Paulus, S. Hadi, U. A. Darsa, and J. C. Burie, “The Handwritten Sundanese Palm Leaf Manuscript Dataset from 15th Century,” in Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, Jul. 2017, vol. 1, pp. 796–800. https://doi.org/10.1109/ICDAR.2017.135
H. Salsabila, E. Rachmawati, and F. Sthevanie, “Sundanese Aksara Recognition Using Histogram of Oriented Gradients,” in 2019 2nd International Seminar on Research of Information Technology and Intelligent Systems, ISRITI 2019, Dec. 2019, pp. 253–258. https://doi.org/10.1109/ISRITI48646.2019.9034589
M. W. A. Kesiman, S. Prum, J. C. Burie, and J. M. Ogier, “Study on feature extraction methods for character recognition of Balinese script on palm leaf manuscript images,” in Proceedings - International Conference on Pattern Recognition, Jan. 2016, vol. 0, pp. 4017–4022. https://doi.org/10.1109/ICPR.2016.7900262
A. Hidayat, I. Nurtanio, and Z. Tahir, “Segmentation and recognition of handwritten Lontara characters using convolutional neural network,” in 2019 International Conference on Information and Communications Technology, ICOIACT 2019, Jul. 2019, pp. 157–161. https://doi.org/10.1109/ICOIACT46704.2019.8938445
N. T. B. Pasaribu and M. J. Hasugian, “Feature Extraction Comparison in Handwriting Recognition of Batak Toba Alphabet,” IJITEE (International J. Inf. Technol. Electr. Eng., vol. 1, no. 3, p. 86, Jan. 2018. https://doi.org/10.22146/ijitee.31969
A. Priya, S. Mishra, S. Raj, S. Mandal, and S. Datta, “Online and offline character recognition: A survey,” in International Conference on Communication and Signal Processing, ICCSP 2016, Nov. 2016, pp. 967–970. https://doi.org/10.1109/ICCSP.2016.7754291
X. Y. Zhang, Y. Bengio, and C. L. Liu, “Online and offline handwritten Chinese character recognition: A comprehensive study and new benchmark,” Pattern Recognit., vol. 61, pp. 348–360, Jan. 2017. https://doi.org/10.1016/j.patcog.2016.08.005
C. L. Liu, F. Yin, D. H. Wang, and Q. F. Wang, “Online and offline handwritten Chinese character recognition: Benchmarking on new databases,” Pattern Recognit., vol. 46, no. 1, pp. 155–162, Jan. 2013. https://doi.org/10.1016/j.patcog.2012.06.021
N. Arica and F. T. Yarman-Vural, “An overview of character recognition focused on off-line handwriting,” IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, vol. 31, no. 2. pp. 216–233, May 2001. https://doi.org/10.1109/5326.941845
S. Sitinjak, “Pengenalan Tulisan Tangan Aksara Batak Toba Menggunakan Backpropagation,” Universitas Atma Jaya, Yogyakarta, 2012.
Khairunisa, “Pengenalan Tulisan tangan Latin Bersambung Menggunakan Jaringan Saraf Tiruan Propagasi Balik,” 2012.
N. Putra, “Peningkatan Fiture Jaringan Propagasi Balik pada Pengenalan Angka Tulisan Tangan Menggunakan Metode Zoning dan Diagonal Base Feature Extraction,” Dunia Teknol. Inf., vol. I, no. 1, 2012.
N. Theresia Br Pasaribu and M. Jimmy Hasugian, “Pengenalan Tulisan Tangan Ina ni surat Aksara Batak Toba,” 2015.
N. T. B. Pasaribu and M. J. Hasugian, “Noise removal on Batak Toba handwritten script using Artificial Neural Network,” in Proceedings - 2016 3rd International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE 2016, Apr. 2017, pp. 373–376. https://doi.org/10.1109/ICITACEE.2016.7892474
P. Romulus, Y. Maraden, P. D. Purnamasari, and A. A. P. Ratna, “An analysis of optical character recognition implementation for ancient Batak characters using K-nearest neighbors principle,” in 14th International Conference on QiR (Quality in Research), QiR 2015 - In conjunction with 4th Asian Symposium on Material Processing, ASMP 2015 and International Conference in Saving Energy in Refrigeration and Air Conditioning, ICSERA 2015, Jan. 2016, pp. 47–50. https://doi.org/10.1109/QiR.2015.7374893
S. Afroge, B. Ahmed, and F. Mahmud, “Optical character recognition using back propagation neural network,” Mar. 2017. https://doi.org/10.1109/ICECTE.2016.7879615
S. R. Zanwar, A. S. Narote, and S. P. Narote, “English Character Recognition Using Robust Back Propagation Neural Network,” in Communications in Computer and Information Science, Dec. 2019, vol. 1037, pp. 216–227. https://doi.org/10.1007/978-981-13-9187-3_20
D. P. Chandra and A. Suryadibrata, “Implementasi Jaringan Saraf Tiruan Backpropagation untuk Pengenalan Karakter pada Dokumen Tercetak,” Ultim. Comput., vol. XI, no. 2, Pp. 81, 2019.
M. A. Muchtar et al., “Digitization of Batak Manuscripts Using Methods Learning Vector Quantization (LVQ),” in IOP Conference Series: Materials Science and Engineering, May 2020, vol. 851, no. 1, Pp. 012066. https://doi.org/10.1088/1757-899X/851/1/012066
S. Vijayprasath, “A Simple Feature Extraction Method for Analysis of Hand Written Characters,” J. Phys. Conf. Ser., vol. 1717, no. 1, p. 012066, Jan. 2021. https://doi.org/10.1088/1742-6596/1717/1/012066
F. Westphal, N. Lavesson, and H. Grahn, “Document image binarization using recurrent neural networks,” in Proceedings - 13th IAPR International Workshop on Document Analysis Systems, DAS 2018, Jun. 2018, pp. 263–268. https://doi.org/10.1109/DAS.2018.71
A. Choudhary, R. Rishi, and S. Ahlawat, “Off-line Handwritten Character Recognition Using Features Extracted from Binarization Technique,” AASRI Procedia, vol. 4, pp. 306–312, Jan. 2013. https://doi.org/10.1016/j.aasri.2013.10.045
P. Puneet and N. Garg, “Binarization Techniques used for Grey Scale Images,” Int. J. Comput. Appl., vol. 71, no. 1, pp. 8–11, Jun. 2013. https://doi.org/10.5120/12320-8533
L. Ben Boudaoud, A. Sider, and A. Tari, “A new thinning algorithm for binary images,” Aug. 2015. https://doi.org/10.1109/CEIT.2015.7233099
D. Phillips, Image Processing in C Second Edition. R & D Publications, 1994.
J. Pradeep, E. Srinivasan, and S. Himavathi, “Diagonal Based Feature Extraction for Handwritten Alphabets Recognition System Using Neural Network,” Int. J. Comput. Sci. Inf. Technol., vol. 3, no. 1, 2011. https://doi.org/10.5121/ijcsit.2011.3103
M. A. Firmansyah, K. N. Ramadhani, and A. Arifianto, “Pengenalan Angka Tulisan Tangan Menggunakan Diagonal Feature Extraction dan Artificial Neural Network Multilayer Perceptron,” Indones. J. Comput., vol. 3, no. 1, pp. 65, May 2018. https://doi.org/10.21108/INDOJC.2018.3.1.214