Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 6, No. 2, May 2021
  4. Articles

Issue

Vol. 6, No. 2, May 2021

Issue Published : May 31, 2021
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Diagonal Based Feature Extraction and Backpropagation Neural Network in Handwritten Batak Toba Characters Recognition

https://doi.org/10.22219/kinetik.v6i2.1212
Elviawaty Muisa Zamzami
Universitas Sumatera Utara
Septi Hayanti
Universitas Sumatera Utara
Erna Budhiarti Nababan
Universitas Sumatera Utara

Corresponding Author(s) : Elviawaty Muisa Zamzami

elvi_zamzami@usu.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 6, No. 2, May 2021
Article Published : May 31, 2021

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Handwritten character recognition is considered a complex problem since one’s handwritten character has its characteristics.  Data used for this research was a photo of handwritten or scanned handwritten.  In this research, Backpropagation Neural Network (BPNN) was used to recognize handwritten Batak Toba character, wherein preprocessing stage feature extraction was done using Diagonal Based Feature Extraction (DBFE) to obtain feature value.  Furthermore, the feature value will be used as an input to BPNN. The total number of data used was190 data, where 114 data was used for the training process and another 76 data was used for testing. From the testing process carried out, the accuracy obtained was 87,19 %.

Keywords

Character Recognition Feature Extraction Backpropagation Neural Network Diagonal Based Feature Extraction
Zamzami, E. M., Hayanti, S., & Nababan, E. B. (2021). Diagonal Based Feature Extraction and Backpropagation Neural Network in Handwritten Batak Toba Characters Recognition. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 6(2). https://doi.org/10.22219/kinetik.v6i2.1212
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. A. K. M. S. Azad Rabby, S. Haque, S. Abujar, and S. A. Hossain, “Ekushnet: Using convolutional neural network for Bangla handwritten recognition,” in Procedia Computer Science, Jan. 2018, vol. 143, pp. 603–610. https://doi.org/10.1016/j.procs.2018.10.437
  2. A. Junaidi, S. Vajda, and G. A. Fink, “Lampung - A new handwritten character benchmark: Database, labeling and recognition,” in ACM International Conference Proceeding Series, 2011, Pp. 1. https://doi.org/10.1145/2034617.2034632
  3. H. Fitriawan, Ariyanto, and H. Setiawan, “Neural Networks for Lampung Characters Handwritten Recognition,” in Proceedings - 6th International Conference on Computer and Communication Engineering: Innovative Technologies to Serve Humanity, ICCCE 2016, Dec. 2016, pp. 485–488. https://doi.org/10.1109/ICCCE.2016.107
  4. M. Suryani, E. Paulus, S. Hadi, U. A. Darsa, and J. C. Burie, “The Handwritten Sundanese Palm Leaf Manuscript Dataset from 15th Century,” in Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, Jul. 2017, vol. 1, pp. 796–800. https://doi.org/10.1109/ICDAR.2017.135
  5. H. Salsabila, E. Rachmawati, and F. Sthevanie, “Sundanese Aksara Recognition Using Histogram of Oriented Gradients,” in 2019 2nd International Seminar on Research of Information Technology and Intelligent Systems, ISRITI 2019, Dec. 2019, pp. 253–258. https://doi.org/10.1109/ISRITI48646.2019.9034589
  6. M. W. A. Kesiman, S. Prum, J. C. Burie, and J. M. Ogier, “Study on feature extraction methods for character recognition of Balinese script on palm leaf manuscript images,” in Proceedings - International Conference on Pattern Recognition, Jan. 2016, vol. 0, pp. 4017–4022. https://doi.org/10.1109/ICPR.2016.7900262
  7. A. Hidayat, I. Nurtanio, and Z. Tahir, “Segmentation and recognition of handwritten Lontara characters using convolutional neural network,” in 2019 International Conference on Information and Communications Technology, ICOIACT 2019, Jul. 2019, pp. 157–161. https://doi.org/10.1109/ICOIACT46704.2019.8938445
  8. N. T. B. Pasaribu and M. J. Hasugian, “Feature Extraction Comparison in Handwriting Recognition of Batak Toba Alphabet,” IJITEE (International J. Inf. Technol. Electr. Eng., vol. 1, no. 3, p. 86, Jan. 2018. https://doi.org/10.22146/ijitee.31969
  9. A. Priya, S. Mishra, S. Raj, S. Mandal, and S. Datta, “Online and offline character recognition: A survey,” in International Conference on Communication and Signal Processing, ICCSP 2016, Nov. 2016, pp. 967–970. https://doi.org/10.1109/ICCSP.2016.7754291
  10. X. Y. Zhang, Y. Bengio, and C. L. Liu, “Online and offline handwritten Chinese character recognition: A comprehensive study and new benchmark,” Pattern Recognit., vol. 61, pp. 348–360, Jan. 2017. https://doi.org/10.1016/j.patcog.2016.08.005
  11. C. L. Liu, F. Yin, D. H. Wang, and Q. F. Wang, “Online and offline handwritten Chinese character recognition: Benchmarking on new databases,” Pattern Recognit., vol. 46, no. 1, pp. 155–162, Jan. 2013. https://doi.org/10.1016/j.patcog.2012.06.021
  12. N. Arica and F. T. Yarman-Vural, “An overview of character recognition focused on off-line handwriting,” IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, vol. 31, no. 2. pp. 216–233, May 2001. https://doi.org/10.1109/5326.941845
  13. S. Sitinjak, “Pengenalan Tulisan Tangan Aksara Batak Toba Menggunakan Backpropagation,” Universitas Atma Jaya, Yogyakarta, 2012.
  14. Khairunisa, “Pengenalan Tulisan tangan Latin Bersambung Menggunakan Jaringan Saraf Tiruan Propagasi Balik,” 2012.
  15. N. Putra, “Peningkatan Fiture Jaringan Propagasi Balik pada Pengenalan Angka Tulisan Tangan Menggunakan Metode Zoning dan Diagonal Base Feature Extraction,” Dunia Teknol. Inf., vol. I, no. 1, 2012.
  16. N. Theresia Br Pasaribu and M. Jimmy Hasugian, “Pengenalan Tulisan Tangan Ina ni surat Aksara Batak Toba,” 2015.
  17. N. T. B. Pasaribu and M. J. Hasugian, “Noise removal on Batak Toba handwritten script using Artificial Neural Network,” in Proceedings - 2016 3rd International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE 2016, Apr. 2017, pp. 373–376. https://doi.org/10.1109/ICITACEE.2016.7892474
  18. P. Romulus, Y. Maraden, P. D. Purnamasari, and A. A. P. Ratna, “An analysis of optical character recognition implementation for ancient Batak characters using K-nearest neighbors principle,” in 14th International Conference on QiR (Quality in Research), QiR 2015 - In conjunction with 4th Asian Symposium on Material Processing, ASMP 2015 and International Conference in Saving Energy in Refrigeration and Air Conditioning, ICSERA 2015, Jan. 2016, pp. 47–50. https://doi.org/10.1109/QiR.2015.7374893
  19. S. Afroge, B. Ahmed, and F. Mahmud, “Optical character recognition using back propagation neural network,” Mar. 2017. https://doi.org/10.1109/ICECTE.2016.7879615
  20. S. R. Zanwar, A. S. Narote, and S. P. Narote, “English Character Recognition Using Robust Back Propagation Neural Network,” in Communications in Computer and Information Science, Dec. 2019, vol. 1037, pp. 216–227. https://doi.org/10.1007/978-981-13-9187-3_20
  21. D. P. Chandra and A. Suryadibrata, “Implementasi Jaringan Saraf Tiruan Backpropagation untuk Pengenalan Karakter pada Dokumen Tercetak,” Ultim. Comput., vol. XI, no. 2, Pp. 81, 2019.
  22. M. A. Muchtar et al., “Digitization of Batak Manuscripts Using Methods Learning Vector Quantization (LVQ),” in IOP Conference Series: Materials Science and Engineering, May 2020, vol. 851, no. 1, Pp. 012066. https://doi.org/10.1088/1757-899X/851/1/012066
  23. S. Vijayprasath, “A Simple Feature Extraction Method for Analysis of Hand Written Characters,” J. Phys. Conf. Ser., vol. 1717, no. 1, p. 012066, Jan. 2021. https://doi.org/10.1088/1742-6596/1717/1/012066
  24. F. Westphal, N. Lavesson, and H. Grahn, “Document image binarization using recurrent neural networks,” in Proceedings - 13th IAPR International Workshop on Document Analysis Systems, DAS 2018, Jun. 2018, pp. 263–268. https://doi.org/10.1109/DAS.2018.71
  25. A. Choudhary, R. Rishi, and S. Ahlawat, “Off-line Handwritten Character Recognition Using Features Extracted from Binarization Technique,” AASRI Procedia, vol. 4, pp. 306–312, Jan. 2013. https://doi.org/10.1016/j.aasri.2013.10.045
  26. P. Puneet and N. Garg, “Binarization Techniques used for Grey Scale Images,” Int. J. Comput. Appl., vol. 71, no. 1, pp. 8–11, Jun. 2013. https://doi.org/10.5120/12320-8533
  27. L. Ben Boudaoud, A. Sider, and A. Tari, “A new thinning algorithm for binary images,” Aug. 2015. https://doi.org/10.1109/CEIT.2015.7233099
  28. D. Phillips, Image Processing in C Second Edition. R & D Publications, 1994.
  29. J. Pradeep, E. Srinivasan, and S. Himavathi, “Diagonal Based Feature Extraction for Handwritten Alphabets Recognition System Using Neural Network,” Int. J. Comput. Sci. Inf. Technol., vol. 3, no. 1, 2011. https://doi.org/10.5121/ijcsit.2011.3103
  30. M. A. Firmansyah, K. N. Ramadhani, and A. Arifianto, “Pengenalan Angka Tulisan Tangan Menggunakan Diagonal Feature Extraction dan Artificial Neural Network Multilayer Perceptron,” Indones. J. Comput., vol. 3, no. 1, pp. 65, May 2018. https://doi.org/10.21108/INDOJC.2018.3.1.214
Read More

References


A. K. M. S. Azad Rabby, S. Haque, S. Abujar, and S. A. Hossain, “Ekushnet: Using convolutional neural network for Bangla handwritten recognition,” in Procedia Computer Science, Jan. 2018, vol. 143, pp. 603–610. https://doi.org/10.1016/j.procs.2018.10.437

A. Junaidi, S. Vajda, and G. A. Fink, “Lampung - A new handwritten character benchmark: Database, labeling and recognition,” in ACM International Conference Proceeding Series, 2011, Pp. 1. https://doi.org/10.1145/2034617.2034632

H. Fitriawan, Ariyanto, and H. Setiawan, “Neural Networks for Lampung Characters Handwritten Recognition,” in Proceedings - 6th International Conference on Computer and Communication Engineering: Innovative Technologies to Serve Humanity, ICCCE 2016, Dec. 2016, pp. 485–488. https://doi.org/10.1109/ICCCE.2016.107

M. Suryani, E. Paulus, S. Hadi, U. A. Darsa, and J. C. Burie, “The Handwritten Sundanese Palm Leaf Manuscript Dataset from 15th Century,” in Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, Jul. 2017, vol. 1, pp. 796–800. https://doi.org/10.1109/ICDAR.2017.135

H. Salsabila, E. Rachmawati, and F. Sthevanie, “Sundanese Aksara Recognition Using Histogram of Oriented Gradients,” in 2019 2nd International Seminar on Research of Information Technology and Intelligent Systems, ISRITI 2019, Dec. 2019, pp. 253–258. https://doi.org/10.1109/ISRITI48646.2019.9034589

M. W. A. Kesiman, S. Prum, J. C. Burie, and J. M. Ogier, “Study on feature extraction methods for character recognition of Balinese script on palm leaf manuscript images,” in Proceedings - International Conference on Pattern Recognition, Jan. 2016, vol. 0, pp. 4017–4022. https://doi.org/10.1109/ICPR.2016.7900262

A. Hidayat, I. Nurtanio, and Z. Tahir, “Segmentation and recognition of handwritten Lontara characters using convolutional neural network,” in 2019 International Conference on Information and Communications Technology, ICOIACT 2019, Jul. 2019, pp. 157–161. https://doi.org/10.1109/ICOIACT46704.2019.8938445

N. T. B. Pasaribu and M. J. Hasugian, “Feature Extraction Comparison in Handwriting Recognition of Batak Toba Alphabet,” IJITEE (International J. Inf. Technol. Electr. Eng., vol. 1, no. 3, p. 86, Jan. 2018. https://doi.org/10.22146/ijitee.31969

A. Priya, S. Mishra, S. Raj, S. Mandal, and S. Datta, “Online and offline character recognition: A survey,” in International Conference on Communication and Signal Processing, ICCSP 2016, Nov. 2016, pp. 967–970. https://doi.org/10.1109/ICCSP.2016.7754291

X. Y. Zhang, Y. Bengio, and C. L. Liu, “Online and offline handwritten Chinese character recognition: A comprehensive study and new benchmark,” Pattern Recognit., vol. 61, pp. 348–360, Jan. 2017. https://doi.org/10.1016/j.patcog.2016.08.005

C. L. Liu, F. Yin, D. H. Wang, and Q. F. Wang, “Online and offline handwritten Chinese character recognition: Benchmarking on new databases,” Pattern Recognit., vol. 46, no. 1, pp. 155–162, Jan. 2013. https://doi.org/10.1016/j.patcog.2012.06.021

N. Arica and F. T. Yarman-Vural, “An overview of character recognition focused on off-line handwriting,” IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, vol. 31, no. 2. pp. 216–233, May 2001. https://doi.org/10.1109/5326.941845

S. Sitinjak, “Pengenalan Tulisan Tangan Aksara Batak Toba Menggunakan Backpropagation,” Universitas Atma Jaya, Yogyakarta, 2012.

Khairunisa, “Pengenalan Tulisan tangan Latin Bersambung Menggunakan Jaringan Saraf Tiruan Propagasi Balik,” 2012.

N. Putra, “Peningkatan Fiture Jaringan Propagasi Balik pada Pengenalan Angka Tulisan Tangan Menggunakan Metode Zoning dan Diagonal Base Feature Extraction,” Dunia Teknol. Inf., vol. I, no. 1, 2012.

N. Theresia Br Pasaribu and M. Jimmy Hasugian, “Pengenalan Tulisan Tangan Ina ni surat Aksara Batak Toba,” 2015.

N. T. B. Pasaribu and M. J. Hasugian, “Noise removal on Batak Toba handwritten script using Artificial Neural Network,” in Proceedings - 2016 3rd International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE 2016, Apr. 2017, pp. 373–376. https://doi.org/10.1109/ICITACEE.2016.7892474

P. Romulus, Y. Maraden, P. D. Purnamasari, and A. A. P. Ratna, “An analysis of optical character recognition implementation for ancient Batak characters using K-nearest neighbors principle,” in 14th International Conference on QiR (Quality in Research), QiR 2015 - In conjunction with 4th Asian Symposium on Material Processing, ASMP 2015 and International Conference in Saving Energy in Refrigeration and Air Conditioning, ICSERA 2015, Jan. 2016, pp. 47–50. https://doi.org/10.1109/QiR.2015.7374893

S. Afroge, B. Ahmed, and F. Mahmud, “Optical character recognition using back propagation neural network,” Mar. 2017. https://doi.org/10.1109/ICECTE.2016.7879615

S. R. Zanwar, A. S. Narote, and S. P. Narote, “English Character Recognition Using Robust Back Propagation Neural Network,” in Communications in Computer and Information Science, Dec. 2019, vol. 1037, pp. 216–227. https://doi.org/10.1007/978-981-13-9187-3_20

D. P. Chandra and A. Suryadibrata, “Implementasi Jaringan Saraf Tiruan Backpropagation untuk Pengenalan Karakter pada Dokumen Tercetak,” Ultim. Comput., vol. XI, no. 2, Pp. 81, 2019.

M. A. Muchtar et al., “Digitization of Batak Manuscripts Using Methods Learning Vector Quantization (LVQ),” in IOP Conference Series: Materials Science and Engineering, May 2020, vol. 851, no. 1, Pp. 012066. https://doi.org/10.1088/1757-899X/851/1/012066

S. Vijayprasath, “A Simple Feature Extraction Method for Analysis of Hand Written Characters,” J. Phys. Conf. Ser., vol. 1717, no. 1, p. 012066, Jan. 2021. https://doi.org/10.1088/1742-6596/1717/1/012066

F. Westphal, N. Lavesson, and H. Grahn, “Document image binarization using recurrent neural networks,” in Proceedings - 13th IAPR International Workshop on Document Analysis Systems, DAS 2018, Jun. 2018, pp. 263–268. https://doi.org/10.1109/DAS.2018.71

A. Choudhary, R. Rishi, and S. Ahlawat, “Off-line Handwritten Character Recognition Using Features Extracted from Binarization Technique,” AASRI Procedia, vol. 4, pp. 306–312, Jan. 2013. https://doi.org/10.1016/j.aasri.2013.10.045

P. Puneet and N. Garg, “Binarization Techniques used for Grey Scale Images,” Int. J. Comput. Appl., vol. 71, no. 1, pp. 8–11, Jun. 2013. https://doi.org/10.5120/12320-8533

L. Ben Boudaoud, A. Sider, and A. Tari, “A new thinning algorithm for binary images,” Aug. 2015. https://doi.org/10.1109/CEIT.2015.7233099

D. Phillips, Image Processing in C Second Edition. R & D Publications, 1994.

J. Pradeep, E. Srinivasan, and S. Himavathi, “Diagonal Based Feature Extraction for Handwritten Alphabets Recognition System Using Neural Network,” Int. J. Comput. Sci. Inf. Technol., vol. 3, no. 1, 2011. https://doi.org/10.5121/ijcsit.2011.3103

M. A. Firmansyah, K. N. Ramadhani, and A. Arifianto, “Pengenalan Angka Tulisan Tangan Menggunakan Diagonal Feature Extraction dan Artificial Neural Network Multilayer Perceptron,” Indones. J. Comput., vol. 3, no. 1, pp. 65, May 2018. https://doi.org/10.21108/INDOJC.2018.3.1.214

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 173 Download : 177

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License