Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 6, No. 2, May 2021
  4. Articles

Issue

Vol. 6, No. 2, May 2021

Issue Published : May 31, 2021
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

ClusterMix K-Prototypes Algorithm to Capture Variable Characteristics of Patient Mortality With Heart Failure

https://doi.org/10.22219/kinetik.v6i2.1209
Raditya Novidianto
Institut Teknologi Sepuluh Nopember
Hardianto Wibowo
Universitas Muhammadiyah Malang
https://orcid.org/0000-0002-8209-6434
Didih Rizki Chandranegara
Universitas Muhammadiyah Malang

Corresponding Author(s) : Hardianto Wibowo

ardi@umm.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 6, No. 2, May 2021
Article Published : May 31, 2021

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Cardiovascular Disease (CVD) is one of the leading causes of many death worldwide, leading to heart failure incidence. The World Health Organization (WHO) says the number of people dying from cardiovascular disease from heart failure each year has an average of 17,9 million deaths each year, about 31 percent of the total deaths globally. Identify the mortality factors of heart failure patients that need to be formed, which reduces death due to heart failure. One of them is by using variable mortality due to heart failure by applying the k-prototypes algorithm. The clustering result is formed 2 clusters that are considered optimal based on the highest silhouette coefficient value of 0,5777. The results of the study were carried out as segmentation of patients with variable mortality of heart failure patients, which showed that cluster 1 is a cluster of patients who have a low risk of the chance of mortality due to heart failure and cluster 2 is a cluster of patients with a high risk of mortality due to heart failure. The segmentation is based on the average value of each variable of heart failure mortality factor in each cluster compared to normal conditions in serum creatine variables, ejection fraction,  age,  serum sodium, blood pressure, anemia,  creatinine phosphokinase,  platelets, smoking, gender, and diabetes.

Keywords

Internet of Things Platform Internet of Things Message Queuing Telemetry Transport MQTT Broker Server
Novidianto, R. ., Wibowo, H., & Chandranegara, D. R. (2021). ClusterMix K-Prototypes Algorithm to Capture Variable Characteristics of Patient Mortality With Heart Failure. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 6(2). https://doi.org/10.22219/kinetik.v6i2.1209
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. J. Barallobre-Barreiro, Y.-L. Chung, and M. Mayr, “Proteomics and metabolomics for mechanistic insights and biomarker discovery in cardiovascular disease,” Rev. Española Cardiol. (English Ed., vol. 66, no. 8, pp. 657–661, 2013. https://doi.org/10.1016/j.rec.2013.04.009
  2. World Health Organization, “WHO.”
  3. A. B. I. NATIONAL HEART, LUNG, “No Title.”
  4. T. Ahmad, A. Munir, S. H. Bhatti, M. Aftab, and M. A. Raza, “Survival analysis of heart failure patients: A case study,” PLoS One, vol. 12, no. 7, p. e0181001, 2017. https://doi.org/10.1371/journal.pone.0181001
  5. F. Meng et al., “Machine learning for prediction of sudden cardiac death in heart failure patients with low left ventricular ejection fraction: study protocol for a retroprospective multicentre registry in China,” BMJ Open, vol. 9, no. 5, p. e023724, 2019. https://doi.org/10.1136/bmjopen-2018-023724
  6. T. A. Buchan et al., “Physician prediction versus model predicted prognosis in ambulatory patients with heart failure,” J. Hear. Lung Transplant., vol. 38, no. 4, pp. S381, 2019. https://doi.org/10.1016/j.healun.2019.01.971
  7. B. Chapman, A. D. DeVore, R. J. Mentz, and M. Metra, “Clinical profiles in acute heart failure: an urgent need for a new approach,” ESC Hear. Fail., vol. 6, no. 3, pp. 464–474, 2019. https://dx.doi.org/10.1002%2Fehf2.12439
  8. L. Chiodo, M. Casula, E. Tragni, A. Baragetti, D. Norata, and A. L. Catapano, “Profilo cardiometabolico in una coorte lombarda: lo studio PLIC. Cardio-metabolic profile in a cohort from Lombardy region: the PLIC study,” G. Ital. di Farm. e Farm., vol. 9, no. 2, pp. 35–53, 2017.
  9. D. Chicco and G. Jurman, “Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone,” BMC Med. Inform. Decis. Mak., vol. 20, no. 1, pp. 16, 2020. https://dx.doi.org/10.1186%2Fs12911-020-1023-5
  10. Y. Al-Kofahi, W. Lassoued, W. Lee, and B. Roysam, “Improved automatic detection and segmentation of cell nuclei in histopathology images,” IEEE Trans. Biomed. Eng., vol. 57, no. 4, pp. 841–852, 2009. https://doi.org/10.1109/TBME.2009.2035102
  11. P. Arora and S. Varshney, “Analysis of k-means and k-medoids algorithm for big data,” Procedia Comput. Sci., vol. 78, pp. 507–512, 2016. https://doi.org/10.1016/j.procs.2016.02.095
  12. T. S. Madhulatha, “Comparison between k-means and k-medoids clustering algorithms,” in International Conference on Advances in Computing and Information Technology, 2011, pp. 472–481. https://doi.org/10.1007/978-3-642-22555-0_48
  13. R. Madhuri, M. R. Murty, J. V. R. Murthy, P. P. Reddy, and S. C. Satapathy, “Cluster analysis on different data sets using K-modes and K-prototype algorithms,” in ICT and Critical Infrastructure: Proceedings of the 48th Annual Convention of Computer Society of India-Vol II, 2014, pp. 137–144. https://doi.org/10.1007/978-3-319-03095-1_15
  14. J. Supranto, “Statistik Deskriptif.” Jakarta: Airlangga, 1988.
  15. T. Ahmad, A. Munir, S. H. Bhatti, M. Aftab, and M. A. Raza, “Survival analysis of heart failure patients: A case study,” PloS one, 2017.
  16. A. A. Mattjik, I. Sumertajaya, G. N. A. Wibawa, and A. F. Hadi, “Sidik peubah ganda dengan menggunakan SAS.” 2011.
  17. S. Sharma and S. Sharma, “Applied multivariate techniques,” 1996.
  18. S. G. Rao and A. Govardhan, “Performance validation of the modified k-means clustering algorithm clusters data,” Int. J. Sci. Eng. Res., vol. 6, no. 10, pp. 726–730, 2015.
  19. Z. Ansari, M. F. Azeem, W. Ahmed, and A. V. Babu, “Quantitative evaluation of performance and validity indices for clustering the web navigational sessions,” arXiv Prepr. arXiv1507.03340, 2015.
  20. P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of cluster analysis,” J. Comput. Appl. Math., vol. 20, pp. 53–65, 1987. https://doi.org/10.1016/0377-0427(87)90125-7
  21. N. J. Salkind, Encyclopedia of measurement and statistics. SAGE publications, 2006.
  22. Z. Huang, “Extensions to the k-means algorithm for clustering large data sets with categorical values,” Data Min. Knowl. Discov., vol. 2, no. 3, pp. 283–304, 1998.
  23. R. A. Johnson and D. W. Wichern, Applied multivariate statistical analysis, vol. 5, no. 8. Prentice hall Upper Saddle River, NJ, 2002.
  24. G. Gan, C. Ma, and W. Jianhong, “Center-based clustering algorithms,” Data Clust. Theory, Algorithms Appl., 2007. https://doi.org/10.1137/1.9780898718348.ch9
Read More

References


J. Barallobre-Barreiro, Y.-L. Chung, and M. Mayr, “Proteomics and metabolomics for mechanistic insights and biomarker discovery in cardiovascular disease,” Rev. Española Cardiol. (English Ed., vol. 66, no. 8, pp. 657–661, 2013. https://doi.org/10.1016/j.rec.2013.04.009

World Health Organization, “WHO.”

A. B. I. NATIONAL HEART, LUNG, “No Title.”

T. Ahmad, A. Munir, S. H. Bhatti, M. Aftab, and M. A. Raza, “Survival analysis of heart failure patients: A case study,” PLoS One, vol. 12, no. 7, p. e0181001, 2017. https://doi.org/10.1371/journal.pone.0181001

F. Meng et al., “Machine learning for prediction of sudden cardiac death in heart failure patients with low left ventricular ejection fraction: study protocol for a retroprospective multicentre registry in China,” BMJ Open, vol. 9, no. 5, p. e023724, 2019. https://doi.org/10.1136/bmjopen-2018-023724

T. A. Buchan et al., “Physician prediction versus model predicted prognosis in ambulatory patients with heart failure,” J. Hear. Lung Transplant., vol. 38, no. 4, pp. S381, 2019. https://doi.org/10.1016/j.healun.2019.01.971

B. Chapman, A. D. DeVore, R. J. Mentz, and M. Metra, “Clinical profiles in acute heart failure: an urgent need for a new approach,” ESC Hear. Fail., vol. 6, no. 3, pp. 464–474, 2019. https://dx.doi.org/10.1002%2Fehf2.12439

L. Chiodo, M. Casula, E. Tragni, A. Baragetti, D. Norata, and A. L. Catapano, “Profilo cardiometabolico in una coorte lombarda: lo studio PLIC. Cardio-metabolic profile in a cohort from Lombardy region: the PLIC study,” G. Ital. di Farm. e Farm., vol. 9, no. 2, pp. 35–53, 2017.

D. Chicco and G. Jurman, “Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone,” BMC Med. Inform. Decis. Mak., vol. 20, no. 1, pp. 16, 2020. https://dx.doi.org/10.1186%2Fs12911-020-1023-5

Y. Al-Kofahi, W. Lassoued, W. Lee, and B. Roysam, “Improved automatic detection and segmentation of cell nuclei in histopathology images,” IEEE Trans. Biomed. Eng., vol. 57, no. 4, pp. 841–852, 2009. https://doi.org/10.1109/TBME.2009.2035102

P. Arora and S. Varshney, “Analysis of k-means and k-medoids algorithm for big data,” Procedia Comput. Sci., vol. 78, pp. 507–512, 2016. https://doi.org/10.1016/j.procs.2016.02.095

T. S. Madhulatha, “Comparison between k-means and k-medoids clustering algorithms,” in International Conference on Advances in Computing and Information Technology, 2011, pp. 472–481. https://doi.org/10.1007/978-3-642-22555-0_48

R. Madhuri, M. R. Murty, J. V. R. Murthy, P. P. Reddy, and S. C. Satapathy, “Cluster analysis on different data sets using K-modes and K-prototype algorithms,” in ICT and Critical Infrastructure: Proceedings of the 48th Annual Convention of Computer Society of India-Vol II, 2014, pp. 137–144. https://doi.org/10.1007/978-3-319-03095-1_15

J. Supranto, “Statistik Deskriptif.” Jakarta: Airlangga, 1988.

T. Ahmad, A. Munir, S. H. Bhatti, M. Aftab, and M. A. Raza, “Survival analysis of heart failure patients: A case study,” PloS one, 2017.

A. A. Mattjik, I. Sumertajaya, G. N. A. Wibawa, and A. F. Hadi, “Sidik peubah ganda dengan menggunakan SAS.” 2011.

S. Sharma and S. Sharma, “Applied multivariate techniques,” 1996.

S. G. Rao and A. Govardhan, “Performance validation of the modified k-means clustering algorithm clusters data,” Int. J. Sci. Eng. Res., vol. 6, no. 10, pp. 726–730, 2015.

Z. Ansari, M. F. Azeem, W. Ahmed, and A. V. Babu, “Quantitative evaluation of performance and validity indices for clustering the web navigational sessions,” arXiv Prepr. arXiv1507.03340, 2015.

P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of cluster analysis,” J. Comput. Appl. Math., vol. 20, pp. 53–65, 1987. https://doi.org/10.1016/0377-0427(87)90125-7

N. J. Salkind, Encyclopedia of measurement and statistics. SAGE publications, 2006.

Z. Huang, “Extensions to the k-means algorithm for clustering large data sets with categorical values,” Data Min. Knowl. Discov., vol. 2, no. 3, pp. 283–304, 1998.

R. A. Johnson and D. W. Wichern, Applied multivariate statistical analysis, vol. 5, no. 8. Prentice hall Upper Saddle River, NJ, 2002.

G. Gan, C. Ma, and W. Jianhong, “Center-based clustering algorithms,” Data Clust. Theory, Algorithms Appl., 2007. https://doi.org/10.1137/1.9780898718348.ch9

Author Biography

Hardianto Wibowo, Universitas Muhammadiyah Malang

Scopus Profile: https://www.scopus.com/authid/detail.uri?authorId=57202574052

Google Scholar Profile: https://scholar.google.com.ua/citations?hl=ru&user=jlwEzmsAAAAJ

Download this PDF file
PDF
Statistic
Read Counter : 175 Download : 268

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License