Quick jump to page content
  • Main Navigation
  • Main Content
  • Sidebar

  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Home
  • Current
  • Archives
  • Join As Reviewer
  • Info
  • Announcements
  • Statistics
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  1. Home
  2. Archives
  3. Vol. 6, No. 2, May 2021
  4. Articles

Issue

Vol. 6, No. 2, May 2021

Issue Published : May 31, 2021
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Moving Objects Semantic Segmentation using SegNet with VGG Encoder for Autonomous Driving

https://doi.org/10.22219/kinetik.v6i2.1203
Wahyudi Setiawan
Universitas Trunojoyo Madura
Kori Cahyono
Badan Penelitian dan Pengembangan Provinsi Riau

Corresponding Author(s) : Wahyudi Setiawan

wsetiawan@trunojoyo.ac.id

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, Vol. 6, No. 2, May 2021
Article Published : May 31, 2021

Share
WA Share on Facebook Share on Twitter Pinterest Email Telegram
  • Abstract
  • Cite
  • References
  • Authors Details

Abstract

Segmentation and recognition become the general steps to identify objects. This research discusses pixel-wise semantic segmentation based on moving objects. The data from the CamVid video which is a collection of autonomous driving images. The image data consist of 701 images accompanied by labels. The segmentation and recognition of 11 objects contained in the image (sky, building, pole, road, pavement, tree, sign-symbol, fence, car, pedestrian and bicyclist) is representing. This moving object segmentation is carried out using SegNet which is one of the Convolutional Neural Network (CNN) methods. Image segmentation on CNN generally consists of two parts: Encoder and Decoder. VGG16 and VGG19 pre-trained networks are used as encoders, while decoders are the upsampling of encoders. Network optimization uses stochastic gradient descent of Momentum (SGDM). The test produces the best recognition was road objects with an accuracy of 0.96013, IoU 0.93745, F1-Score 0.8535 using VGG19 encoder, while when using VGG16 encoder accuracy was 0.94162, IoU 0.92309, and F1-Score 0.8535.

Keywords

Autonomous Driving CamVid SegNet Semantic Segmentation VGG encoder
Setiawan, W., & Cahyono, K. (2021). Moving Objects Semantic Segmentation using SegNet with VGG Encoder for Autonomous Driving. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 6(2). https://doi.org/10.22219/kinetik.v6i2.1203
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
Endnote/Zotero/Mendeley (RIS)
BibTeX
References
  1. J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks for Semantic Segmentation,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3431–3440. https://doi.org/10.1109/cvpr.2015.7298965
  2. Y. Li, J. Dai, and X. Ji, “Fully Convolutional Instance-aware Semantic Segmentation,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2359–2367. https://doi.org/10.1109/cvpr.2017.472
  3. R. Girshick, J. Donahue, T. Darrell, U. C. Berkeley, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 2–9. https://doi.org/10.1109/CVPR.2014.81
  4. J. Dai, K. He, and J. Sun, “Instance-aware Semantic Segmentation via Multi-task Network Cascades,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 3150–3158. https://doi.org/10.1109/cvpr.2014.81
  5. A. Khoreva, R. Benenson, J. Hosang, and M. Hein, “Simple Does It : Weakly Supervised Instance and Semantic Segmentation,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 876–885. https://doi.org/10.1109/CVPR.2017.181
  6. M. Yahiaoui et al., “FisheyeMODNet: Moving Object detection on Surround-view Cameras for Autonomous Driving,” 2019, pp. 1–4.https:// doi.org/10.21427/v1ar-t994
  7. H. Rashed, M. Ramzy, V. Vaquero, A. El Sallab, G. Sistu, and S. Yogamani, “FuseMODNet : Real-Time Camera and LiDAR based Moving Object Detection for robust low-light Autonomous Driving,” in IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), 2019, pp. 1–10. https://doi.org/10.1109/ICCVW.2019.00293
  8. H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, and Q. Xu, “nuScenes : A multimodal dataset for autonomous driving,” in IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020, no. March, pp. 1–16. https://doi.org/10.1109/CVPR42600.2020.01164
  9. G. Gordon, “Social behaviour as an emergent property of embodied curiosity : a robotics perspective,” Philos. Trans. B, vol. 374, pp. 1–7, 2019. https://doi.org/10.1098/rstb.2018.0029
  10. W. Lumchanow and S. Udomsiri, “Image classification of malaria using hybrid algorithms : convolutional neural network and method to find appropriate K for K-Nearest neighbor,” Indones. J. Electr. Eng. Comput. Sci., vol. 16, no. 1, pp. 382–388, 2019. https://doi.org/10.11591/ijeecs.v16.i1.pp382-388
  11. W. Setiawan, M. I. Utoyo, and R. Rulaningtyas, “Transfer learning with multiple pre-trained network for fundus classification,” TELKOMNIKA, vol. 18, no. 3, pp. 1382–1388, 2020. https://doi.org/10.12928/telkomnika.v18i3.14868
  12. M. Siam, V. Sepehr, M. Jagersand, and N. Ray, “Convolutional Gated Recurrent Networks for Video Segmentation,” in IEEE International Conference on Image Processing (ICIP), 2017, pp. 1–5. https://doi.org/10.1109/ICIP.2017.8296851
  13. N. Fatihahsahidan, A. K. Juha, N. Mohammad, and Z. Ibrahim, “Flower and leaf recognition for plant identification using convolutional neural network,” Indones. J. Electr. Eng. Comput. Sci., vol. 16, no. 2, pp. 737–743, 2019. https://doi.org/10.11591/ijeecs.v16.i2.pp737-743
  14. M. Syarief and W. Setiawan, “Convolutional neural network for maize leaf disease image classification,” TELKOMNIKA, vol. 18, no. 3, pp. 1376–1381, 2020. https://doi.org/10.12928/telkomnika.v18i3.14840
  15. G. J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes in video : A high-definition ground truth database,” Pattern Recognit. Lett., pp. 1–10, 2008. https://doi.org/10.1016/j.patrec.2008.04.005
  16. C. Yu, J. Wang, C. Peng, C. Gao, and N. Sang, “BiSeNet : Bilateral Segmentation Network for Real-time Semantic Segmentation,” in European COnference on Computer Vision, 2018, pp. 1–17. https://doi.org/10.1007/978-3-030-01261-8_20
  17. J. Simon, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio, “The One Hundred Layers Tiramisu : Fully Convolutional DenseNets for Semantic Segmentation,” in IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2017, pp. 11–19. https://doi.org/10.1109/cvprw.2017.156
  18. M. Siam, S. Elkerdawy, and M. Jagersand, “Deep Semantic Segmentation for Automated Driving : Taxonomy , Roadmap and Challenges,” in IEEE International Conference on Intelligent Transportation Systems (ITSC), 2017, pp. 1–8. https://doi.org/10.1109/ITSC.2017.8317714
  19. F. Visin, M. Ciccone, and A. Romero, “ReSeg : A Recurrent Neural Network-based Model for Semantic Segmentation,” in IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2016, pp. 41–48. https://doi.org/10.1109/CVPRW.2016.60
  20. V. Badrinarayanan, A. Kendall, R. Cipolla, and S. Member, “SegNet : A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 1–14, 2016. https://doi.org/10.1109/TPAMI.2016.2644615
  21. E. Fernandez-moral, R. Martins, D. Wolf, and P. Rives, “A new metric for evaluating semantic segmentation : leveraging global and contour accuracy,” in IEEE Intelligent Vehicles Symposium (IV), 2018, pp. 1–8. https://doi.org/10.1109/IVS.2018.8500497
  22. M. Kampffmeyer, A. Salberg, and R. Jenssen, “Semantic Segmentation of Small Objects and Modeling of Uncertainty in Urban Remote Sensing Images Using Deep Convolutional Neural Networks,” in IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2016, pp. 1–9. https://doi.org/10.1109/CVPRW.2016.90
  23. D. Eigen and R. Fergus, “Predicting Depth , Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture,” in IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1–9. https://doi.org/10.1109/ICCV.2015.304
  24. R. Dong, X. Pan, and F. Li, “DenseU-Net-Based Semantic Segmentation of Small Objects in Urban Remote Sensing Images,” IEEE Access, vol. 7, no. June, pp. 65347–65356, 2019. https://doi.org/10.1109/ACCESS.2019.2917952
  25. A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets Robotics : The KITTI Dataset,” Int. J. Rob. Res., vol. 32, no. 11, pp. 1–6, 2011. https://doi.org/10.1177/0278364913491297
  26. G. Neuhold, T. Ollmann, S. R. Bul, and P. Kontschieder, “The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes,” in IEEE International Conference on Computer Vision (ICCV), 2017, pp. 1–10. https://doi.org/10.1109/ICCV.2017.534
Read More

References


J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks for Semantic Segmentation,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3431–3440. https://doi.org/10.1109/cvpr.2015.7298965

Y. Li, J. Dai, and X. Ji, “Fully Convolutional Instance-aware Semantic Segmentation,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2359–2367. https://doi.org/10.1109/cvpr.2017.472

R. Girshick, J. Donahue, T. Darrell, U. C. Berkeley, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 2–9. https://doi.org/10.1109/CVPR.2014.81

J. Dai, K. He, and J. Sun, “Instance-aware Semantic Segmentation via Multi-task Network Cascades,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 3150–3158. https://doi.org/10.1109/cvpr.2014.81

A. Khoreva, R. Benenson, J. Hosang, and M. Hein, “Simple Does It : Weakly Supervised Instance and Semantic Segmentation,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 876–885. https://doi.org/10.1109/CVPR.2017.181

M. Yahiaoui et al., “FisheyeMODNet: Moving Object detection on Surround-view Cameras for Autonomous Driving,” 2019, pp. 1–4.https:// doi.org/10.21427/v1ar-t994

H. Rashed, M. Ramzy, V. Vaquero, A. El Sallab, G. Sistu, and S. Yogamani, “FuseMODNet : Real-Time Camera and LiDAR based Moving Object Detection for robust low-light Autonomous Driving,” in IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), 2019, pp. 1–10. https://doi.org/10.1109/ICCVW.2019.00293

H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, and Q. Xu, “nuScenes : A multimodal dataset for autonomous driving,” in IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020, no. March, pp. 1–16. https://doi.org/10.1109/CVPR42600.2020.01164

G. Gordon, “Social behaviour as an emergent property of embodied curiosity : a robotics perspective,” Philos. Trans. B, vol. 374, pp. 1–7, 2019. https://doi.org/10.1098/rstb.2018.0029

W. Lumchanow and S. Udomsiri, “Image classification of malaria using hybrid algorithms : convolutional neural network and method to find appropriate K for K-Nearest neighbor,” Indones. J. Electr. Eng. Comput. Sci., vol. 16, no. 1, pp. 382–388, 2019. https://doi.org/10.11591/ijeecs.v16.i1.pp382-388

W. Setiawan, M. I. Utoyo, and R. Rulaningtyas, “Transfer learning with multiple pre-trained network for fundus classification,” TELKOMNIKA, vol. 18, no. 3, pp. 1382–1388, 2020. https://doi.org/10.12928/telkomnika.v18i3.14868

M. Siam, V. Sepehr, M. Jagersand, and N. Ray, “Convolutional Gated Recurrent Networks for Video Segmentation,” in IEEE International Conference on Image Processing (ICIP), 2017, pp. 1–5. https://doi.org/10.1109/ICIP.2017.8296851

N. Fatihahsahidan, A. K. Juha, N. Mohammad, and Z. Ibrahim, “Flower and leaf recognition for plant identification using convolutional neural network,” Indones. J. Electr. Eng. Comput. Sci., vol. 16, no. 2, pp. 737–743, 2019. https://doi.org/10.11591/ijeecs.v16.i2.pp737-743

M. Syarief and W. Setiawan, “Convolutional neural network for maize leaf disease image classification,” TELKOMNIKA, vol. 18, no. 3, pp. 1376–1381, 2020. https://doi.org/10.12928/telkomnika.v18i3.14840

G. J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes in video : A high-definition ground truth database,” Pattern Recognit. Lett., pp. 1–10, 2008. https://doi.org/10.1016/j.patrec.2008.04.005

C. Yu, J. Wang, C. Peng, C. Gao, and N. Sang, “BiSeNet : Bilateral Segmentation Network for Real-time Semantic Segmentation,” in European COnference on Computer Vision, 2018, pp. 1–17. https://doi.org/10.1007/978-3-030-01261-8_20

J. Simon, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio, “The One Hundred Layers Tiramisu : Fully Convolutional DenseNets for Semantic Segmentation,” in IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2017, pp. 11–19. https://doi.org/10.1109/cvprw.2017.156

M. Siam, S. Elkerdawy, and M. Jagersand, “Deep Semantic Segmentation for Automated Driving : Taxonomy , Roadmap and Challenges,” in IEEE International Conference on Intelligent Transportation Systems (ITSC), 2017, pp. 1–8. https://doi.org/10.1109/ITSC.2017.8317714

F. Visin, M. Ciccone, and A. Romero, “ReSeg : A Recurrent Neural Network-based Model for Semantic Segmentation,” in IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2016, pp. 41–48. https://doi.org/10.1109/CVPRW.2016.60

V. Badrinarayanan, A. Kendall, R. Cipolla, and S. Member, “SegNet : A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 1–14, 2016. https://doi.org/10.1109/TPAMI.2016.2644615

E. Fernandez-moral, R. Martins, D. Wolf, and P. Rives, “A new metric for evaluating semantic segmentation : leveraging global and contour accuracy,” in IEEE Intelligent Vehicles Symposium (IV), 2018, pp. 1–8. https://doi.org/10.1109/IVS.2018.8500497

M. Kampffmeyer, A. Salberg, and R. Jenssen, “Semantic Segmentation of Small Objects and Modeling of Uncertainty in Urban Remote Sensing Images Using Deep Convolutional Neural Networks,” in IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2016, pp. 1–9. https://doi.org/10.1109/CVPRW.2016.90

D. Eigen and R. Fergus, “Predicting Depth , Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture,” in IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1–9. https://doi.org/10.1109/ICCV.2015.304

R. Dong, X. Pan, and F. Li, “DenseU-Net-Based Semantic Segmentation of Small Objects in Urban Remote Sensing Images,” IEEE Access, vol. 7, no. June, pp. 65347–65356, 2019. https://doi.org/10.1109/ACCESS.2019.2917952

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets Robotics : The KITTI Dataset,” Int. J. Rob. Res., vol. 32, no. 11, pp. 1–6, 2011. https://doi.org/10.1177/0278364913491297

G. Neuhold, T. Ollmann, S. R. Bul, and P. Kontschieder, “The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes,” in IEEE International Conference on Computer Vision (ICCV), 2017, pp. 1–10. https://doi.org/10.1109/ICCV.2017.534

Author biographies is not available.
Download this PDF file
PDF
Statistic
Read Counter : 251 Download : 217

Downloads

Download data is not yet available.

Quick Link

  • Author Guidelines
  • Download Manuscript Template
  • Peer Review Process
  • Editorial Board
  • Reviewer Acknowledgement
  • Aim and Scope
  • Publication Ethics
  • Licensing Term
  • Copyright Notice
  • Open Access Policy
  • Important Dates
  • Author Fees
  • Indexing and Abstracting
  • Archiving Policy
  • Scopus Citation Analysis
  • Statistic
  • Article Withdrawal

Meet Our Editorial Team

Ir. Amrul Faruq, M.Eng., Ph.D
Editor in Chief
Universitas Muhammadiyah Malang
Google Scholar Scopus
Agus Eko Minarno
Editorial Board
Universitas Muhammadiyah Malang
Google Scholar  Scopus
Hanung Adi Nugroho
Editorial Board
Universitas Gadjah Mada
Google Scholar Scopus
Roman Voliansky
Editorial Board
Dniprovsky State Technical University, Ukraine
Google Scholar Scopus
Read More
 

KINETIK: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
eISSN : 2503-2267
pISSN : 2503-2259


Address

Program Studi Elektro dan Informatika

Fakultas Teknik, Universitas Muhammadiyah Malang

Jl. Raya Tlogomas 246 Malang

Phone 0341-464318 EXT 247

Contact Info

Principal Contact

Amrul Faruq
Phone: +62 812-9398-6539
Email: faruq@umm.ac.id

Support Contact

Fauzi Dwi Setiawan Sumadi
Phone: +62 815-1145-6946
Email: fauzisumadi@umm.ac.id

© 2020 KINETIK, All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License