This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Design of a Fractional Order PID Controller for Electric Hydraulic Actuator
Corresponding Author(s) : Erinna Dyah Atsari
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 6, No. 1, February 2021
Abstract
Electric hydraulic actuators are more used especially in industries that demand high levels of accuracy. A common problem with this type of actuator is consistency in fluid flow control. PID controllers can accelerate the achievement of defined output values, eliminate offsets, and reduce maximum overshoots but result in considerable errors. Therefore, it is necessary to design controllers that can reduce errors significantly. In this research, a Fractional Order PID controller is developed to reduce maximum overshoots and steady state. Unlike conventional PID controllers that have three parameters, in the Fractional Order PID controller, there are extra two parameters of the λ and μ. The parameters were selected using the Ziegler Nichols method with a 1st order approach with a delay time. Meanwhile, the λ and μ parameters were selected the best value to make the system response better. The results of the design of the Fractional Order PID controller were evaluated using matlab simulation. The simulation results showed that the Fractional Order PID controller was able to reduce the steady state error response by 0.5 %, and the maximum overshoots by 17.4 %. From this result, it can be noted that the Fractional Order PID controller is better than conventional PID.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. N. Sahu, S. Singh, A. Singh, M. Law, “Static and Dynamic Characterization and Control of a High-Performance Electro-Hydraulic Actuator,” MDPI Journal Actuators, 2020. https://doi.org/10.3390/act9020046
- D. Q. Truong, K. K. Ahn, “Force Control for Press Machines Using an Online Smart Tuning Fuzzy PID Based on a Robust Extended Kalman Filter” Elsevier Expert System with Applications, 2011. https://doi.org/10.1016/j.eswa.2010.11.035
- M. M. Jayanegara, Zulfaman, N. A. Mardiyah, “Pemodelan dan Pengaturan Adaptif untuk Sistem Hidrolik Tak-Linier.” KINETIK, 1(3), 107-122, 2016. https://doi.org/10.22219/kinetik.v1i3.42
- H. Sobfshan, J. Zongxia, W. Chengwen, S. Yaoxing, “Fuzzy Robust Nonlinear Control Approach for Electro-Hydraulic Flight Motion Simulator,” Chinese. Journal of Aeronautics, 28, 294–304, 2015. https://doi.org/10.1016/j.cja.2014.12.025
- P. Shah, S. Agashe, “Review of Fractional PID Controller” Elsevier Mechatronics 38, 2016. https://doi.org/10.1016/j.mechatronics.2016.06.005
- H. S. Li, Y. Luo, Y. Q. Chen, “A Fractional Order Proportional and Derivative (FOPD) Motion Controller: Tuning Rule and Experiments,” IEEE Transactions on Control Systems Technology, 18(2):516-20, 2020. https://doi.org/10.1109/TCST.2009.2019120
- B. Isabela, F. Silviu, P. Ovidiu, D. Eva, “An Experimental Tuning Approach of Fractional Order Controllers in the Frequency Domain,” MDPI Applied Sciences, 2020. https://doi.org/10.3390/app10072379
- L. Junyi, C. Qijuan, “Fractional Order Controller Designing with Firefly Algorithm and Parameter Optimization for Hydroturbine Governing System,” Mathematical Problems in Engineering, 2015. https://doi.org/10.1155/2015/825608
- R.S Barbosa, J.T Machado, I.S Jesus. “Effect of Fractional Orders in the Velocity Control of a Servo System,” Compututers and Mathematics with Applications 59 (5):1679–86, 2010. https://doi.org/10.1016/j.camwa.2009.08.009
- M. Rinki, B. Manisha, “Design of Optimal PID (FOPID) Controller for Linear System,” IEEE International Conference on Micro Electronics and Telecommunication Engineering, 978-1-5090-3411-6, 2016. https://doi.org/10.1109/ICMETE.2016.45
- M. G. Skarpetis, F. N. Koumboulis, “Robust PID Controller for Electro – Hydaulic Actuators,” IEEE 978-1-4799-0864-6, 2013. https://doi.org/10.1109/ETFA.2013.6648165
- A. S. Ahmed, ”Sampled Data Observer Based Inter-sample Output Predictor for Electro – Hydraulic Actuators” Elsevier ISA Transactioons, 2015. https://doi.org/10.1016/j.isatra.2015.05.002
- C. B. Kadu, C. Y. Patil, “Design and Implementation of Stable PID Controller for Interacting Level Control System” Elsevier 7th International Conference on Communication, Computing and Virtualization, 2016. https://doi.org/10.1016/j.procs.2016.03.097
- L. Xiang, C. Z Zhen, C. R. Guang, “Force Loading Tracking Control of on Electro Actuator Based on a Nonlinear Adaptive Fuzzy Backstepping Control Scheme” MDPI Journal Symmetry, 2018. https://doi.org/10.3390/sym10050155
- P. Gianluca, S. Salvatore, T. Mario, “Sliding-mode Observers for State and Disturbance Estimation in Electro – Hydraulic Systems” Elsevier Control Engineering Practice, 2018. https://doi.org/10.1016/j.conengprac.2018.02.007
- D. Shah, S. Chatterjee, K. Bharati, “Tuning of fractional-order PID controller” Frontiers in Computer, Communication and Electrical Engineering, 2016. https://doi.org/10.1201/b20012-64
- D. K. Robin, I. M. Cristina, M. I. Clara, “A novel Auto-tuning Method for Fractional order PI/PD Controllers” Elsevier ISA Transactions, 2016. https://doi.org/10.1016/j.isatra.2016.01.021
- A. D. Ali, M. V. Blas, C. Yangquan, S.H. Hossein, ”Linear Fractional Order Controllers; A Survey in the Frequency Domain” Elsevier Annual Reviews in Control, 2019. https://doi.org/10.1016/j.arcontrol.2019.03.008
- A. D. Mohammad, A. N. Mohammad, “Analysing Stability of Time Delayed Synchronous Generator and Designing Optimal Stabilizer Fractional Order PID Controller using Partical Swarm Optimization Technique,” IEEE 2nd International Conference on Power Electronics, Intelligent Control and Energy Systems, 2018. https://doi.org/10.1109/ICPEICES.2018.8897429
- S. Ijaz, L. Yan, N. Shahzad, “An Fractional Order Control of Dissimilar Redundant Actuating System Used in Large Air Craft” IEEE, 2017. https://doi.org/10.1109/CCDC.2017.7979145
References
G. N. Sahu, S. Singh, A. Singh, M. Law, “Static and Dynamic Characterization and Control of a High-Performance Electro-Hydraulic Actuator,” MDPI Journal Actuators, 2020. https://doi.org/10.3390/act9020046
D. Q. Truong, K. K. Ahn, “Force Control for Press Machines Using an Online Smart Tuning Fuzzy PID Based on a Robust Extended Kalman Filter” Elsevier Expert System with Applications, 2011. https://doi.org/10.1016/j.eswa.2010.11.035
M. M. Jayanegara, Zulfaman, N. A. Mardiyah, “Pemodelan dan Pengaturan Adaptif untuk Sistem Hidrolik Tak-Linier.” KINETIK, 1(3), 107-122, 2016. https://doi.org/10.22219/kinetik.v1i3.42
H. Sobfshan, J. Zongxia, W. Chengwen, S. Yaoxing, “Fuzzy Robust Nonlinear Control Approach for Electro-Hydraulic Flight Motion Simulator,” Chinese. Journal of Aeronautics, 28, 294–304, 2015. https://doi.org/10.1016/j.cja.2014.12.025
P. Shah, S. Agashe, “Review of Fractional PID Controller” Elsevier Mechatronics 38, 2016. https://doi.org/10.1016/j.mechatronics.2016.06.005
H. S. Li, Y. Luo, Y. Q. Chen, “A Fractional Order Proportional and Derivative (FOPD) Motion Controller: Tuning Rule and Experiments,” IEEE Transactions on Control Systems Technology, 18(2):516-20, 2020. https://doi.org/10.1109/TCST.2009.2019120
B. Isabela, F. Silviu, P. Ovidiu, D. Eva, “An Experimental Tuning Approach of Fractional Order Controllers in the Frequency Domain,” MDPI Applied Sciences, 2020. https://doi.org/10.3390/app10072379
L. Junyi, C. Qijuan, “Fractional Order Controller Designing with Firefly Algorithm and Parameter Optimization for Hydroturbine Governing System,” Mathematical Problems in Engineering, 2015. https://doi.org/10.1155/2015/825608
R.S Barbosa, J.T Machado, I.S Jesus. “Effect of Fractional Orders in the Velocity Control of a Servo System,” Compututers and Mathematics with Applications 59 (5):1679–86, 2010. https://doi.org/10.1016/j.camwa.2009.08.009
M. Rinki, B. Manisha, “Design of Optimal PID (FOPID) Controller for Linear System,” IEEE International Conference on Micro Electronics and Telecommunication Engineering, 978-1-5090-3411-6, 2016. https://doi.org/10.1109/ICMETE.2016.45
M. G. Skarpetis, F. N. Koumboulis, “Robust PID Controller for Electro – Hydaulic Actuators,” IEEE 978-1-4799-0864-6, 2013. https://doi.org/10.1109/ETFA.2013.6648165
A. S. Ahmed, ”Sampled Data Observer Based Inter-sample Output Predictor for Electro – Hydraulic Actuators” Elsevier ISA Transactioons, 2015. https://doi.org/10.1016/j.isatra.2015.05.002
C. B. Kadu, C. Y. Patil, “Design and Implementation of Stable PID Controller for Interacting Level Control System” Elsevier 7th International Conference on Communication, Computing and Virtualization, 2016. https://doi.org/10.1016/j.procs.2016.03.097
L. Xiang, C. Z Zhen, C. R. Guang, “Force Loading Tracking Control of on Electro Actuator Based on a Nonlinear Adaptive Fuzzy Backstepping Control Scheme” MDPI Journal Symmetry, 2018. https://doi.org/10.3390/sym10050155
P. Gianluca, S. Salvatore, T. Mario, “Sliding-mode Observers for State and Disturbance Estimation in Electro – Hydraulic Systems” Elsevier Control Engineering Practice, 2018. https://doi.org/10.1016/j.conengprac.2018.02.007
D. Shah, S. Chatterjee, K. Bharati, “Tuning of fractional-order PID controller” Frontiers in Computer, Communication and Electrical Engineering, 2016. https://doi.org/10.1201/b20012-64
D. K. Robin, I. M. Cristina, M. I. Clara, “A novel Auto-tuning Method for Fractional order PI/PD Controllers” Elsevier ISA Transactions, 2016. https://doi.org/10.1016/j.isatra.2016.01.021
A. D. Ali, M. V. Blas, C. Yangquan, S.H. Hossein, ”Linear Fractional Order Controllers; A Survey in the Frequency Domain” Elsevier Annual Reviews in Control, 2019. https://doi.org/10.1016/j.arcontrol.2019.03.008
A. D. Mohammad, A. N. Mohammad, “Analysing Stability of Time Delayed Synchronous Generator and Designing Optimal Stabilizer Fractional Order PID Controller using Partical Swarm Optimization Technique,” IEEE 2nd International Conference on Power Electronics, Intelligent Control and Energy Systems, 2018. https://doi.org/10.1109/ICPEICES.2018.8897429
S. Ijaz, L. Yan, N. Shahzad, “An Fractional Order Control of Dissimilar Redundant Actuating System Used in Large Air Craft” IEEE, 2017. https://doi.org/10.1109/CCDC.2017.7979145