Mental Disorder Detection via Social Media Mining using Deep Learning
Corresponding Author(s) : Binti Kholifah
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 5, No. 4, November 2020
Abstract
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Wongkoblap, M. A. Vadillo, and V. Curcin, “Detecting and Treating Mental Illness on Social Networks,” Proc. - 2017 IEEE Int. Conf. Healthc. Informatics, ICHI 2017, p. 330, 2017. https://doi.org/10.1109/ICHI.2017.24
- I. Syarif, N. Ningtias, and T. Badriyah, “Study on Mental Disorder Detection via Social Media Mining,” 2019 4th Int. Conf. Comput. Commun. Secur., pp. 1–6, 2019. https://doi.org/10.1109/CCCS.2019.8888096
- E. Saravia, C. H. Chang, R. J. De Lorenzo, and Y. S. Chen, “MIDAS: Mental illness detection and analysis via social media,” Proc. 2016 IEEE/ACM Int. Conf. Adv. Soc. Networks Anal. Mining, ASONAM 2016, pp. 1418–1421, 2016. https://doi.org/10.1109/ASONAM.2016.7752434
- D. Ramalingam, V. Sharma, and P. Zar, “Study of depression analysis using machine learning techniques,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 7C2, pp. 187–191, 2019.
- N. Al Asad, M. A. Mahmud Pranto, S. Afreen, and M. M. Islam, “Depression Detection by Analyzing Social Media Posts of User,” 2019 IEEE Int. Conf. Signal Process. Information, Commun. Syst. SPICSCON 2019, pp. 13–17, 2019. https://doi.org/10.1109/SPICSCON48833.2019.9065101
- X. Bai, “Text classification based on LSTM and attention,” Thirteen. Int. Conf. Digit. Inf. Manag. (ICDIM 2018), pp. 29–32, 2018. https://doi.org/10.1109/ICDIM.2018.8847061
- K. Katchapakirin, K. Wongpatikaseree, P. Yomaboot, and Y. Kaewpitakkun, “Facebook Social Media for Depression Detection in the Thai Community,” Proceeding 2018 15th Int. Jt. Conf. Comput. Sci. Softw. Eng. JCSSE 2018, pp. 1–6, 2018. https://doi.org/10.1109/JCSSE.2018.8457362
- M. Deshpande and V. Rao, “Depression detection using emotion artificial intelligence,” Proc. Int. Conf. Intell. Sustain. Syst. ICISS 2017, no. Iciss, pp. 858–862, 2018. https://doi.org/10.1109/ISS1.2017.8389299
- C. Zucco, B. Calabrese, and M. Cannataro, “Sentiment analysis and affective computing for depression monitoring,” Proc. - 2017 IEEE Int. Conf. Bioinforma. Biomed. BIBM 2017, vol. 2017-Janua, pp. 1988–1995, 2017. https://doi.org/10.1109/BIBM.2017.8217966
- G. A. Coppersmith, C. T. Harman, and M. H. Dredze, “Measuring Post Traumatic Stress Disorder in Twitter,” 2014.
- A. U. Hassan, J. Hussain, M. Hussain, M. Sadiq, and S. Lee, “Sentiment analysis of social networking sites (SNS) data using machine learning approach for the measurement of depression,” Int. Conf. Inf. Commun. Technol. Converg. ICT Converg. Technol. Lead. Fourth Ind. Revolution, ICTC 2017, vol. 2017-Decem, pp. 138–140, 2017. https://doi.org/10.1109/ICTC.2017.8190959
- C. H. Chang, E. Saravia, and Y. S. Chen, “Subconscious Crowdsourcing: A feasible data collection mechanism for mental disorder detection on social media,” Proc. 2016 IEEE/ACM Int. Conf. Adv. Soc. Networks Anal. Mining, ASONAM 2016, pp. 374–379, 2016. https://doi.org/10.1109/ASONAM.2016.7752261
- P. Ekman, Emotions revealed, vol. 328, no. Suppl S5. 2004.
- Y. R. Tausczik and J. W. Pennebaker, “The psychological meaning of words: LIWC and computerized text analysis methods,” J. Lang. Soc. Psychol., vol. 29, no. 1, pp. 24–54, 2010. https://doi.org/10.1177%2F0261927X09351676
- S. S. Rude, E. M. Gortner, and J. W. Pennebaker, “Language use of depressed and depression-vulnerable college students,” Cogn. Emot., vol. 18, no. 8, pp. 1121–1133, 2004. https://doi.org/10.1080/02699930441000030
- M. Al-Mosaiwi and T. Johnstone, “In an Absolute State: Elevated Use of Absolutist Words Is a Marker Specific to Anxiety, Depression, and Suicidal Ideation,” Clin. Psychol. Sci., vol. 6, no. 4, pp. 529–542, 2018. https://doi.org/10.1177%2F2167702617747074
- F. Cao and J. Liang, “A data labeling method for clustering categorical data,” Expert Syst. Appl., vol. 38, no. 3, pp. 2381–2385, 2011. https://doi.org/10.1016/j.eswa.2010.08.026
- S. Sharma and N. Batra, “Comparative Study of Single Linkage , Complete Linkage , and Ward Method of Agglomerative Clustering,” 2019 Int. Conf. Mach. Learn. Big Data, Cloud Parallel Comput., pp. 568–573, 2019. https://doi.org/10.1109/COMITCon.2019.8862232
- A. Starczewski, “A New Hierarchical Clustering Algorithm,” pp. 175–180, 2012. https://doi.org/10.1007/978-3-642-29350-4_21
- S. Hochreiter, “Long Short-Term Memory,” vol. 1780, pp. 1735–1780, 1997.
- C. Olah, “Understanding LSTM Networks,” Web Page, pp. 1–13, 2015.
- J. Brownlee, Long Short-Term Memory Networks With Python Develop Sequence Prediction Models With Deep Learning, V1.0. Jason Brownlee, 2017.
- J. Hu, X. Kang, S. Nishide, and F. Ren, “Text multi-label sentiment analysis based on Bi-LSTM,” Proceeding CCIS, pp. 16–20, 2019. https://doi.org/10.1109/CCIS48116.2019.9073727
- L. Xiao, G. Wang, and Y. Zuo, “Research on Patent Text Classification Based on Word2Vec and LSTM,” Proc. - 2018 11th Int. Symp. Comput. Intell. Des. Isc. 2018, vol. 1, pp. 71–74, 2018. https://doi.org/10.1109/ISCID.2018.00023
- Y. Luan and S. Lin, “Research on Text Classification Based on CNN and LSTM,” Proc. 2019 IEEE Int. Conf. Artif. Intell. Comput. Appl. ICAICA 2019, pp. 352–355, 2019. https://doi.org/10.1109/ICAICA.2019.8873454
References
A. Wongkoblap, M. A. Vadillo, and V. Curcin, “Detecting and Treating Mental Illness on Social Networks,” Proc. - 2017 IEEE Int. Conf. Healthc. Informatics, ICHI 2017, p. 330, 2017. https://doi.org/10.1109/ICHI.2017.24
I. Syarif, N. Ningtias, and T. Badriyah, “Study on Mental Disorder Detection via Social Media Mining,” 2019 4th Int. Conf. Comput. Commun. Secur., pp. 1–6, 2019. https://doi.org/10.1109/CCCS.2019.8888096
E. Saravia, C. H. Chang, R. J. De Lorenzo, and Y. S. Chen, “MIDAS: Mental illness detection and analysis via social media,” Proc. 2016 IEEE/ACM Int. Conf. Adv. Soc. Networks Anal. Mining, ASONAM 2016, pp. 1418–1421, 2016. https://doi.org/10.1109/ASONAM.2016.7752434
D. Ramalingam, V. Sharma, and P. Zar, “Study of depression analysis using machine learning techniques,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 7C2, pp. 187–191, 2019.
N. Al Asad, M. A. Mahmud Pranto, S. Afreen, and M. M. Islam, “Depression Detection by Analyzing Social Media Posts of User,” 2019 IEEE Int. Conf. Signal Process. Information, Commun. Syst. SPICSCON 2019, pp. 13–17, 2019. https://doi.org/10.1109/SPICSCON48833.2019.9065101
X. Bai, “Text classification based on LSTM and attention,” Thirteen. Int. Conf. Digit. Inf. Manag. (ICDIM 2018), pp. 29–32, 2018. https://doi.org/10.1109/ICDIM.2018.8847061
K. Katchapakirin, K. Wongpatikaseree, P. Yomaboot, and Y. Kaewpitakkun, “Facebook Social Media for Depression Detection in the Thai Community,” Proceeding 2018 15th Int. Jt. Conf. Comput. Sci. Softw. Eng. JCSSE 2018, pp. 1–6, 2018. https://doi.org/10.1109/JCSSE.2018.8457362
M. Deshpande and V. Rao, “Depression detection using emotion artificial intelligence,” Proc. Int. Conf. Intell. Sustain. Syst. ICISS 2017, no. Iciss, pp. 858–862, 2018. https://doi.org/10.1109/ISS1.2017.8389299
C. Zucco, B. Calabrese, and M. Cannataro, “Sentiment analysis and affective computing for depression monitoring,” Proc. - 2017 IEEE Int. Conf. Bioinforma. Biomed. BIBM 2017, vol. 2017-Janua, pp. 1988–1995, 2017. https://doi.org/10.1109/BIBM.2017.8217966
G. A. Coppersmith, C. T. Harman, and M. H. Dredze, “Measuring Post Traumatic Stress Disorder in Twitter,” 2014.
A. U. Hassan, J. Hussain, M. Hussain, M. Sadiq, and S. Lee, “Sentiment analysis of social networking sites (SNS) data using machine learning approach for the measurement of depression,” Int. Conf. Inf. Commun. Technol. Converg. ICT Converg. Technol. Lead. Fourth Ind. Revolution, ICTC 2017, vol. 2017-Decem, pp. 138–140, 2017. https://doi.org/10.1109/ICTC.2017.8190959
C. H. Chang, E. Saravia, and Y. S. Chen, “Subconscious Crowdsourcing: A feasible data collection mechanism for mental disorder detection on social media,” Proc. 2016 IEEE/ACM Int. Conf. Adv. Soc. Networks Anal. Mining, ASONAM 2016, pp. 374–379, 2016. https://doi.org/10.1109/ASONAM.2016.7752261
P. Ekman, Emotions revealed, vol. 328, no. Suppl S5. 2004.
Y. R. Tausczik and J. W. Pennebaker, “The psychological meaning of words: LIWC and computerized text analysis methods,” J. Lang. Soc. Psychol., vol. 29, no. 1, pp. 24–54, 2010. https://doi.org/10.1177%2F0261927X09351676
S. S. Rude, E. M. Gortner, and J. W. Pennebaker, “Language use of depressed and depression-vulnerable college students,” Cogn. Emot., vol. 18, no. 8, pp. 1121–1133, 2004. https://doi.org/10.1080/02699930441000030
M. Al-Mosaiwi and T. Johnstone, “In an Absolute State: Elevated Use of Absolutist Words Is a Marker Specific to Anxiety, Depression, and Suicidal Ideation,” Clin. Psychol. Sci., vol. 6, no. 4, pp. 529–542, 2018. https://doi.org/10.1177%2F2167702617747074
F. Cao and J. Liang, “A data labeling method for clustering categorical data,” Expert Syst. Appl., vol. 38, no. 3, pp. 2381–2385, 2011. https://doi.org/10.1016/j.eswa.2010.08.026
S. Sharma and N. Batra, “Comparative Study of Single Linkage , Complete Linkage , and Ward Method of Agglomerative Clustering,” 2019 Int. Conf. Mach. Learn. Big Data, Cloud Parallel Comput., pp. 568–573, 2019. https://doi.org/10.1109/COMITCon.2019.8862232
A. Starczewski, “A New Hierarchical Clustering Algorithm,” pp. 175–180, 2012. https://doi.org/10.1007/978-3-642-29350-4_21
S. Hochreiter, “Long Short-Term Memory,” vol. 1780, pp. 1735–1780, 1997.
C. Olah, “Understanding LSTM Networks,” Web Page, pp. 1–13, 2015.
J. Brownlee, Long Short-Term Memory Networks With Python Develop Sequence Prediction Models With Deep Learning, V1.0. Jason Brownlee, 2017.
J. Hu, X. Kang, S. Nishide, and F. Ren, “Text multi-label sentiment analysis based on Bi-LSTM,” Proceeding CCIS, pp. 16–20, 2019. https://doi.org/10.1109/CCIS48116.2019.9073727
L. Xiao, G. Wang, and Y. Zuo, “Research on Patent Text Classification Based on Word2Vec and LSTM,” Proc. - 2018 11th Int. Symp. Comput. Intell. Des. Isc. 2018, vol. 1, pp. 71–74, 2018. https://doi.org/10.1109/ISCID.2018.00023
Y. Luan and S. Lin, “Research on Text Classification Based on CNN and LSTM,” Proc. 2019 IEEE Int. Conf. Artif. Intell. Comput. Appl. ICAICA 2019, pp. 352–355, 2019. https://doi.org/10.1109/ICAICA.2019.8873454