Performance Comparisson Human Activity Recognition Using Simple Linear Method
Corresponding Author(s) : Wahyu Andhyka Kusuma
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 5, No. 1, February 2020
Abstract
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Shelke and B. Aksanli, “Static and dynamic activity detection with ambient sensors in smart spaces,” Sensors (Switzerland), vol. 19, no. 4, 2019. https://doi.org/10.3390/s19040804
- D. A. Fitriani, W. Andhyka, and D. Risqiwati, “Design of Monitoring System Step Walking With MPU6050 Sensor Based Android,” JOINCS (Journal Informatics, Network, Comput. Sci., vol. 1, no. 1, pp. 1, 2017. https://doi.org/10.21070/joincs.v1i1.799
- W. A. Kusuma, Z. Sari, H. Wibowo, S. Norhabibah, S. N. Ubay, and D. A. Fitriani, “Monitoring walking devices for calorie balance in patients with medical rehabilitation needs,” Int. Conf. Electr. Eng. Comput. Sci. Informatics, vol. 2018-Octob, pp. 460–463, 2018. https://doi.org/10.1109/EECSI.2018.8752761
- I. Gringauz et al., “Risk of falling among hospitalized patients with high modified Morse scores could be further Stratified,” BMC Health Serv. Res., vol. 17, p. 721, Nov. 2017. https://doi.org/10.1186/s12913-017-2685-2
- W. A. Kusuma and L. Husniah, “Skeletonization using thinning method for human motion system,” 2015 Int. Semin. Intell. Technol. Its Appl. ISITIA 2015 - Proceeding, pp. 103–106, 2015. https://doi.org/10.1109/ISITIA.2015.7219962
- O. C. Kurban and T. Yildirim, “Daily motion recognition system by a triaxial accelerometer usable in different positions,” IEEE Sens. J., vol. 19, no. 17, pp. 7543–7552, 2019. https://doi.org/10.1109/JSEN.2019.2915524
- C. Dobbins, R. Rawassizadeh, and E. Momeni, “Detecting physical activity within lifelogs towards preventing obesity and aiding ambient assisted living,” Neurocomputing, vol. 230, no. February, pp. 110–132, 2017. https://doi.org/10.1016/j.neucom.2016.02.088
- M. S. Tremblay, R. C. Colley, T. J. Saunders, G. N. Healy, and N. Owen, “Physiological and health implications of a sedentary lifestyle,” Appl. Physiol. Nutr. Metab., vol. 35, no. 6, pp. 725–740, 2010. https://doi.org/10.1139/H10-079
- D. T. Villareal, C. M. Apovian, R. F. Kushner, and S. Klein, “Obesity in older adults: Technical review and position statement of the American Society for Nutrition and NAASO, the Obesity Society,” Obes. Res., vol. 13, no. 11, pp. 1849–1863, 2005. https://doi.org/10.1038/oby.2005.228
- F. Ioana-Iuliana and D. Rodica-Elena, “Detection of daily movements from data collected with two tri-axial accelerometers,” 2011 34th Int. Conf. Telecommun. Signal Process. TSP 2011 - Proc., no. 26, pp. 376–380, 2011. https://doi.org/10.1109/TSP.2011.6043706
- C. D. Gómez-Carmona, A. Bastida-Castillo, J. García-Rubio, S. J. Ibáñez, and J. Pino-Ortega, “Static and dynamic reliability of WIMU PROTM accelerometers according to anatomical placement,” Proc. Inst. Mech. Eng. Part P J. Sport. Eng. Technol., vol. 233, no. 2, pp. 238–248, 2019. https://doi.org/10.1177%2F1754337118816922
- D. Fuentes, L. Gonzalez-Abril, C. Angulo, and J. A. Ortega, “Online motion recognition using an accelerometer in a mobile device,” Expert Syst. Appl., vol. 39, no. 3, pp. 2461–2465, 2012. https://doi.org/10.1016/j.eswa.2011.08.098
- C. A. Clermont, L. C. Benson, S. T. Osis, D. Kobsar, and R. Ferber, “Running patterns for male and female competitive and recreational runners based on accelerometer data,” J. Sports Sci., vol. 37, no. 2, pp. 204–211, 2019. https://doi.org/10.1080/02640414.2018.1488518
- S. Fan, Y. Jia, and C. Jia, “A feature selection and classification method for activity recognition based on an inertial sensing unit,” Inf., vol. 10, no. 10, 2019. https://doi.org/10.3390/info10100290
- W. Qi, H. Su, C. Yang, G. Ferrigno, E. De Momi, and A. Aliverti, “A Fast and Robust Deep Convolutional Neural Networks for Complex Human Activity Recognition Using Smartphone,” Sensors, vol. 19, no. 17, p. 3731, Aug. 2019. https://doi.org/10.3390/s19173731
- D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public domain dataset for human activity recognition using smartphones,” ESANN 2013 proceedings, 21st Eur. Symp. Artif. Neural Networks, Comput. Intell. Mach. Learn., no. April, pp. 437–442, 2013.
- F. Foerster, M. Smeja, and J. Fahrenberg, “Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring,” Comput. Human Behav., vol. 15, no. 5, pp. 571–583, Sep. 1999. https://doi.org/10.1016/S0747-5632(99)00037-0
- L. Bao and S. S. Intille, “Activity recognition from user-annotated acceleration data,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 3001, pp. 1–17, 2004. https://doi.org/10.1007/978-3-540-24646-6_1
- O. D. Lara and M. A. Labrador, “A Survey on Human Activity Recognition using Wearable Sensors,” IEEE Commun. Surv. Tutorials, vol. 15, no. 3, pp. 1192–1209, 2013. https://doi.org/10.1109/SURV.2012.110112.00192
- M. Yang, H. Zheng, H. Wang, S. McClean, and D. Newell, “IGAIT: An interactive accelerometer based gait analysis system,” Comput. Methods Programs Biomed., vol. 108, no. 2, pp. 715–723, 2012. https://doi.org/10.1016/j.cmpb.2012.04.004
- W. S. Lima, E. Souto, K. El-Khatib, R. Jalali, and J. Gama, “Human activity recognition using inertial sensors in a smartphone: An overview,” Sensors (Switzerland), vol. 19, no. 14, pp. 14–16, 2019. https://doi.org/10.3390/s19143213
- S. Dernbach, B. Das, N. C. Krishnan, B. L. Thomas, and D. J. Cook, “Simple and complex activity recognition through smart phones,” Proc. - 8th Int. Conf. Intell. Environ. IE 2012, pp. 214–221, 2012. https://doi.org/10.1109/IE.2012.39
- J. L. Reyes-Ortiz, L. Oneto, A. Samà, X. Parra, and D. Anguita, “Transition-Aware Human Activity Recognition Using Smartphones,” Neurocomputing, vol. 171, pp. 754–767, 2016. https://doi.org/10.1016/j.neucom.2015.07.085
- Y. Wang et al., Smartphone-Based Human Activity Recognition. 2017.
- Y. M. Kim, C. Theobalt, J. Diebel, J. Kosecka, B. Miscusik, and S. Thrun, “Multi-view Image and ToF Sensor Fusion for Dense 3D Reconstruction,” Austrian Inst. Technol. GmbH, 2009. https://doi.org/10.1109/ICCVW.2009.5457430
- M. Uiterwaal, E. B. C. Glerum, H. J. Busser, and R. C. Van Lummel, “Ambulatory monitoring of physical activity in working situations, a validation study,” J. Med. Eng. Technol., vol. 22, no. 4, pp. 168–172, 1998. https://doi.org/10.3109/03091909809032535
- C. Randell and H. Muller, “Context awareness by analysing accelerometer data,” Int. Symp. Wearable Comput. Dig. Pap., pp. 175–176, 2000. https://doi.org/10.1109/ISWC.2000.888488
References
S. Shelke and B. Aksanli, “Static and dynamic activity detection with ambient sensors in smart spaces,” Sensors (Switzerland), vol. 19, no. 4, 2019. https://doi.org/10.3390/s19040804
D. A. Fitriani, W. Andhyka, and D. Risqiwati, “Design of Monitoring System Step Walking With MPU6050 Sensor Based Android,” JOINCS (Journal Informatics, Network, Comput. Sci., vol. 1, no. 1, pp. 1, 2017. https://doi.org/10.21070/joincs.v1i1.799
W. A. Kusuma, Z. Sari, H. Wibowo, S. Norhabibah, S. N. Ubay, and D. A. Fitriani, “Monitoring walking devices for calorie balance in patients with medical rehabilitation needs,” Int. Conf. Electr. Eng. Comput. Sci. Informatics, vol. 2018-Octob, pp. 460–463, 2018. https://doi.org/10.1109/EECSI.2018.8752761
I. Gringauz et al., “Risk of falling among hospitalized patients with high modified Morse scores could be further Stratified,” BMC Health Serv. Res., vol. 17, p. 721, Nov. 2017. https://doi.org/10.1186/s12913-017-2685-2
W. A. Kusuma and L. Husniah, “Skeletonization using thinning method for human motion system,” 2015 Int. Semin. Intell. Technol. Its Appl. ISITIA 2015 - Proceeding, pp. 103–106, 2015. https://doi.org/10.1109/ISITIA.2015.7219962
O. C. Kurban and T. Yildirim, “Daily motion recognition system by a triaxial accelerometer usable in different positions,” IEEE Sens. J., vol. 19, no. 17, pp. 7543–7552, 2019. https://doi.org/10.1109/JSEN.2019.2915524
C. Dobbins, R. Rawassizadeh, and E. Momeni, “Detecting physical activity within lifelogs towards preventing obesity and aiding ambient assisted living,” Neurocomputing, vol. 230, no. February, pp. 110–132, 2017. https://doi.org/10.1016/j.neucom.2016.02.088
M. S. Tremblay, R. C. Colley, T. J. Saunders, G. N. Healy, and N. Owen, “Physiological and health implications of a sedentary lifestyle,” Appl. Physiol. Nutr. Metab., vol. 35, no. 6, pp. 725–740, 2010. https://doi.org/10.1139/H10-079
D. T. Villareal, C. M. Apovian, R. F. Kushner, and S. Klein, “Obesity in older adults: Technical review and position statement of the American Society for Nutrition and NAASO, the Obesity Society,” Obes. Res., vol. 13, no. 11, pp. 1849–1863, 2005. https://doi.org/10.1038/oby.2005.228
F. Ioana-Iuliana and D. Rodica-Elena, “Detection of daily movements from data collected with two tri-axial accelerometers,” 2011 34th Int. Conf. Telecommun. Signal Process. TSP 2011 - Proc., no. 26, pp. 376–380, 2011. https://doi.org/10.1109/TSP.2011.6043706
C. D. Gómez-Carmona, A. Bastida-Castillo, J. García-Rubio, S. J. Ibáñez, and J. Pino-Ortega, “Static and dynamic reliability of WIMU PROTM accelerometers according to anatomical placement,” Proc. Inst. Mech. Eng. Part P J. Sport. Eng. Technol., vol. 233, no. 2, pp. 238–248, 2019. https://doi.org/10.1177%2F1754337118816922
D. Fuentes, L. Gonzalez-Abril, C. Angulo, and J. A. Ortega, “Online motion recognition using an accelerometer in a mobile device,” Expert Syst. Appl., vol. 39, no. 3, pp. 2461–2465, 2012. https://doi.org/10.1016/j.eswa.2011.08.098
C. A. Clermont, L. C. Benson, S. T. Osis, D. Kobsar, and R. Ferber, “Running patterns for male and female competitive and recreational runners based on accelerometer data,” J. Sports Sci., vol. 37, no. 2, pp. 204–211, 2019. https://doi.org/10.1080/02640414.2018.1488518
S. Fan, Y. Jia, and C. Jia, “A feature selection and classification method for activity recognition based on an inertial sensing unit,” Inf., vol. 10, no. 10, 2019. https://doi.org/10.3390/info10100290
W. Qi, H. Su, C. Yang, G. Ferrigno, E. De Momi, and A. Aliverti, “A Fast and Robust Deep Convolutional Neural Networks for Complex Human Activity Recognition Using Smartphone,” Sensors, vol. 19, no. 17, p. 3731, Aug. 2019. https://doi.org/10.3390/s19173731
D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public domain dataset for human activity recognition using smartphones,” ESANN 2013 proceedings, 21st Eur. Symp. Artif. Neural Networks, Comput. Intell. Mach. Learn., no. April, pp. 437–442, 2013.
F. Foerster, M. Smeja, and J. Fahrenberg, “Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring,” Comput. Human Behav., vol. 15, no. 5, pp. 571–583, Sep. 1999. https://doi.org/10.1016/S0747-5632(99)00037-0
L. Bao and S. S. Intille, “Activity recognition from user-annotated acceleration data,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 3001, pp. 1–17, 2004. https://doi.org/10.1007/978-3-540-24646-6_1
O. D. Lara and M. A. Labrador, “A Survey on Human Activity Recognition using Wearable Sensors,” IEEE Commun. Surv. Tutorials, vol. 15, no. 3, pp. 1192–1209, 2013. https://doi.org/10.1109/SURV.2012.110112.00192
M. Yang, H. Zheng, H. Wang, S. McClean, and D. Newell, “IGAIT: An interactive accelerometer based gait analysis system,” Comput. Methods Programs Biomed., vol. 108, no. 2, pp. 715–723, 2012. https://doi.org/10.1016/j.cmpb.2012.04.004
W. S. Lima, E. Souto, K. El-Khatib, R. Jalali, and J. Gama, “Human activity recognition using inertial sensors in a smartphone: An overview,” Sensors (Switzerland), vol. 19, no. 14, pp. 14–16, 2019. https://doi.org/10.3390/s19143213
S. Dernbach, B. Das, N. C. Krishnan, B. L. Thomas, and D. J. Cook, “Simple and complex activity recognition through smart phones,” Proc. - 8th Int. Conf. Intell. Environ. IE 2012, pp. 214–221, 2012. https://doi.org/10.1109/IE.2012.39
J. L. Reyes-Ortiz, L. Oneto, A. Samà, X. Parra, and D. Anguita, “Transition-Aware Human Activity Recognition Using Smartphones,” Neurocomputing, vol. 171, pp. 754–767, 2016. https://doi.org/10.1016/j.neucom.2015.07.085
Y. Wang et al., Smartphone-Based Human Activity Recognition. 2017.
Y. M. Kim, C. Theobalt, J. Diebel, J. Kosecka, B. Miscusik, and S. Thrun, “Multi-view Image and ToF Sensor Fusion for Dense 3D Reconstruction,” Austrian Inst. Technol. GmbH, 2009. https://doi.org/10.1109/ICCVW.2009.5457430
M. Uiterwaal, E. B. C. Glerum, H. J. Busser, and R. C. Van Lummel, “Ambulatory monitoring of physical activity in working situations, a validation study,” J. Med. Eng. Technol., vol. 22, no. 4, pp. 168–172, 1998. https://doi.org/10.3109/03091909809032535
C. Randell and H. Muller, “Context awareness by analysing accelerometer data,” Int. Symp. Wearable Comput. Dig. Pap., pp. 175–176, 2000. https://doi.org/10.1109/ISWC.2000.888488