Prediction of Biochemical Oxygen Demand Using Radial Basis Function Network
Corresponding Author(s) : Muhammad Noor
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control,
Vol. 5, No. 1, February 2020
Abstract
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. R. Indonesia, “PP No. 82 Tahun 2001 Tentang Pengelolaan Kualitas Air dan Pengendalian Pencemaran Air,” 2001.
- R. Noori, S. Safavi, and S. A. Nateghi Shahrokni, “A reduced-order adaptive neuro-fuzzy inference system model as a software sensor for rapid estimation of five-day biochemical oxygen demand,” J. Hydrol., vol. 495, pp. 175–185, 2013. https://doi.org/10.1016/j.jhydrol.2013.04.052
- A. A. M. Ahmed and S. M. A. Shah, “Application of Adaptive Neuro-Fuzzy Inference System ( ANFIS ) to Estimate the Biochemical Oxygen Demand ( BOD ) of Surma River,” J. King Saud Univ. - Eng. Sci., vol. 29, pp. 237–243, 2017. https://doi.org/10.1016/j.jksues.2015.02.001
- Salmin, “Oksigen Terlarut (DO) Dan Kebutuhan Oksigen Biologi (BOD) Sebagai Salah Satu Indikator Untuk Menentukan Kualitas Perairan,” Oseana, vol. 30, no. 3, pp. 21–26, 2005.
- A. Solgi, A. Pourhaghi, R. Bahmani, and H. Zarei, “Improving SVR and ANFIS performance using wavelet transform and PCA algorithm for modeling and predicting biochemical oxygen demand (BOD),” Ecohydrol. Hydrobiol., vol. 17, no. 2, pp. 164–175, 2017. https://doi.org/10.1016/j.ecohyd.2017.02.002
- Nasional Badan Standardisasi, “SNI 6968.72:2009 Air dan Air Limbah : Cara Uji Kebutuhan Oksigen Biokimia (Biochemical Oxygen Demand/BOD),” 2009.
- L. Fanjun, Q. Junfei, and Z. Wei, “A Fast Growing Cascade Neural Network for BOD Estimation,” 2015 34th Chinese Control Conf., vol. 2015, pp. 3417–3422, 2015. https://doi.org/10.1109/ChiCC.2015.7260167
- J. Qiao, W. Li, and H. Han, “Soft computing of biochemical oxygen demand using an improved T-S fuzzy neural network,” Chinese J. Chem. Eng., vol. 22, no. 11, pp. 1254–1259, 2014. https://doi.org/10.1016/j.cjche.2014.09.023
- E. R. Rene and M. B. Saidutta, “Prediction of bod and cod of a refinery wastewater using multilayer artificial neural networks,” J. Urban Environ. Eng., vol. 2, no. 1, pp. 1–7, 2008. https://doi.org/10.4090/juee.2008.v2n1.001007
- X. Li and J. Song, “A New ANN-Markov chain methodology for water quality prediction,” Proc. Int. Jt. Conf. Neural Networks, 2015. https://doi.org/10.1109/IJCNN.2015.7280320
- D. S. Broomhead and D. Lowe, “Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks,” R. Signals Radar Establ., no. 4148, 1988.
- C. Wang and C. Yan, “Comparison of Four Kinds of Fuzzy C-means Clustering Methods and Their Applications on Posture Classification,” Proc. Int. Symp. Intell. Inf. Syst. Appl., vol. 6, no. 2, pp. 382–385, 2009. https://doi.org/10.1109/ISIP.2010.133
- R. J. Hathaway, J. W. Davenport, and J. C. Bezdek, “Relational Duals of The C-Means Clustering Algorithms,” Pattern Recognit., vol. 22, no. 2, pp. 205–212, 1989. https://doi.org/10.1016/0031-3203(89)90066-6
- Z. Mustaffa and Y. Yusof, “A Comparison of Normalization Techniques in Predicting Dengue Outbreaik,” Int. Conf. Bus. Econ. Res., vol. 1, pp. 345–349, 2011.
- D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” Comput. Eng. Sci. Syst. J., vol. 4, no. 1, pp. 78–82, 2019. https://doi.org/10.24114/cess.v4i1.11458
- M. Stone, “Cross-Validatory Choice and Assessment of Statistical Predictions,” J. R. Stat. Soc. Ser. B, vol. 36, no. 2, pp. 111–133, 1974.
- R. Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection,” Appear. Int. Jt. Conf. Artif. Intell., vol. 118, no. 4, pp. 456–461, 1995.
- M. A. Banjarsari, H. I. Budiman, and A. Farmadi, “Penerapan K-Optimal Pada Algoritma Knn untuk Prediksi Kelulusan Tepat Waktu Mahasiswa Program Studi Ilmu Komputer Fmipa Unlam Berdasarkan IP Sampai Dengan Semester 4,” Kumpul. J. Ilmu Komput., vol. 02, no. 02, pp. 50–64, 2015. http://dx.doi.org/10.20527/klik.v2i2.26
- M. A. Khalilia, J. Bezdek, M. Popescu, and J. M. Keller, “Improvements to the relational fuzzy c-means clustering algorithm,” Pattern Recognit., vol. 47, no. 12, pp. 3920–3930, 2014. https://doi.org/10.1016/j.patcog.2014.06.021
- R. J. Hathaway and J. C. Bezdek, “Nerf C-Means: Non-Euclidean Relational Fuzzy Clustering,” Pattern Recognit., vol. 27, no. 3, pp. 429–437, 1994. https://doi.org/10.1016/0031-3203(94)90119-8
- Y. Kanazawa, “Relational Fuzzy c-Means and Kernel Fuzzy c-Means Using a Quadratic Programming-Based Object-Wise β-Spread Transformation,” Proc. Fifth Int. Conf. KSE 2013, vol. 2, pp. 29–43, 2013. https://doi.org/10.1007/978-3-319-02821-7_5
- J. C. Bezdek, R. Ehrlich, and W. Full, “FCM : The Fuzzy C-Means Custering Algorithm,” Comput. Geosci., vol. 10, no. 2, pp. 191–198, 1984.
- M. J. L. Orr, “Introduction to Radial Basis Function Networks, Univ. Edinburgh, pp. 1–67, 1996. https://doi.org/10.1016/0098-3004(84)90020-7
- T. Chai and R. R. Draxler, “Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature,” Geosci. Model Dev., vol. 7, no. 3, pp. 1247–1250, 2014. https://doi.org/10.3354/cr030079
References
P. R. Indonesia, “PP No. 82 Tahun 2001 Tentang Pengelolaan Kualitas Air dan Pengendalian Pencemaran Air,” 2001.
R. Noori, S. Safavi, and S. A. Nateghi Shahrokni, “A reduced-order adaptive neuro-fuzzy inference system model as a software sensor for rapid estimation of five-day biochemical oxygen demand,” J. Hydrol., vol. 495, pp. 175–185, 2013. https://doi.org/10.1016/j.jhydrol.2013.04.052
A. A. M. Ahmed and S. M. A. Shah, “Application of Adaptive Neuro-Fuzzy Inference System ( ANFIS ) to Estimate the Biochemical Oxygen Demand ( BOD ) of Surma River,” J. King Saud Univ. - Eng. Sci., vol. 29, pp. 237–243, 2017. https://doi.org/10.1016/j.jksues.2015.02.001
Salmin, “Oksigen Terlarut (DO) Dan Kebutuhan Oksigen Biologi (BOD) Sebagai Salah Satu Indikator Untuk Menentukan Kualitas Perairan,” Oseana, vol. 30, no. 3, pp. 21–26, 2005.
A. Solgi, A. Pourhaghi, R. Bahmani, and H. Zarei, “Improving SVR and ANFIS performance using wavelet transform and PCA algorithm for modeling and predicting biochemical oxygen demand (BOD),” Ecohydrol. Hydrobiol., vol. 17, no. 2, pp. 164–175, 2017. https://doi.org/10.1016/j.ecohyd.2017.02.002
Nasional Badan Standardisasi, “SNI 6968.72:2009 Air dan Air Limbah : Cara Uji Kebutuhan Oksigen Biokimia (Biochemical Oxygen Demand/BOD),” 2009.
L. Fanjun, Q. Junfei, and Z. Wei, “A Fast Growing Cascade Neural Network for BOD Estimation,” 2015 34th Chinese Control Conf., vol. 2015, pp. 3417–3422, 2015. https://doi.org/10.1109/ChiCC.2015.7260167
J. Qiao, W. Li, and H. Han, “Soft computing of biochemical oxygen demand using an improved T-S fuzzy neural network,” Chinese J. Chem. Eng., vol. 22, no. 11, pp. 1254–1259, 2014. https://doi.org/10.1016/j.cjche.2014.09.023
E. R. Rene and M. B. Saidutta, “Prediction of bod and cod of a refinery wastewater using multilayer artificial neural networks,” J. Urban Environ. Eng., vol. 2, no. 1, pp. 1–7, 2008. https://doi.org/10.4090/juee.2008.v2n1.001007
X. Li and J. Song, “A New ANN-Markov chain methodology for water quality prediction,” Proc. Int. Jt. Conf. Neural Networks, 2015. https://doi.org/10.1109/IJCNN.2015.7280320
D. S. Broomhead and D. Lowe, “Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks,” R. Signals Radar Establ., no. 4148, 1988.
C. Wang and C. Yan, “Comparison of Four Kinds of Fuzzy C-means Clustering Methods and Their Applications on Posture Classification,” Proc. Int. Symp. Intell. Inf. Syst. Appl., vol. 6, no. 2, pp. 382–385, 2009. https://doi.org/10.1109/ISIP.2010.133
R. J. Hathaway, J. W. Davenport, and J. C. Bezdek, “Relational Duals of The C-Means Clustering Algorithms,” Pattern Recognit., vol. 22, no. 2, pp. 205–212, 1989. https://doi.org/10.1016/0031-3203(89)90066-6
Z. Mustaffa and Y. Yusof, “A Comparison of Normalization Techniques in Predicting Dengue Outbreaik,” Int. Conf. Bus. Econ. Res., vol. 1, pp. 345–349, 2011.
D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” Comput. Eng. Sci. Syst. J., vol. 4, no. 1, pp. 78–82, 2019. https://doi.org/10.24114/cess.v4i1.11458
M. Stone, “Cross-Validatory Choice and Assessment of Statistical Predictions,” J. R. Stat. Soc. Ser. B, vol. 36, no. 2, pp. 111–133, 1974.
R. Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection,” Appear. Int. Jt. Conf. Artif. Intell., vol. 118, no. 4, pp. 456–461, 1995.
M. A. Banjarsari, H. I. Budiman, and A. Farmadi, “Penerapan K-Optimal Pada Algoritma Knn untuk Prediksi Kelulusan Tepat Waktu Mahasiswa Program Studi Ilmu Komputer Fmipa Unlam Berdasarkan IP Sampai Dengan Semester 4,” Kumpul. J. Ilmu Komput., vol. 02, no. 02, pp. 50–64, 2015. http://dx.doi.org/10.20527/klik.v2i2.26
M. A. Khalilia, J. Bezdek, M. Popescu, and J. M. Keller, “Improvements to the relational fuzzy c-means clustering algorithm,” Pattern Recognit., vol. 47, no. 12, pp. 3920–3930, 2014. https://doi.org/10.1016/j.patcog.2014.06.021
R. J. Hathaway and J. C. Bezdek, “Nerf C-Means: Non-Euclidean Relational Fuzzy Clustering,” Pattern Recognit., vol. 27, no. 3, pp. 429–437, 1994. https://doi.org/10.1016/0031-3203(94)90119-8
Y. Kanazawa, “Relational Fuzzy c-Means and Kernel Fuzzy c-Means Using a Quadratic Programming-Based Object-Wise β-Spread Transformation,” Proc. Fifth Int. Conf. KSE 2013, vol. 2, pp. 29–43, 2013. https://doi.org/10.1007/978-3-319-02821-7_5
J. C. Bezdek, R. Ehrlich, and W. Full, “FCM : The Fuzzy C-Means Custering Algorithm,” Comput. Geosci., vol. 10, no. 2, pp. 191–198, 1984.
M. J. L. Orr, “Introduction to Radial Basis Function Networks, Univ. Edinburgh, pp. 1–67, 1996. https://doi.org/10.1016/0098-3004(84)90020-7
T. Chai and R. R. Draxler, “Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature,” Geosci. Model Dev., vol. 7, no. 3, pp. 1247–1250, 2014. https://doi.org/10.3354/cr030079