Vision-Based Pipe Monitoring Robot For Crack Detection Using Canny Edge Detection Method As An Image Processing Technique

Vision-Based Pipe Monitoring Robot For Crack Detection Using Canny Edge Detection Method As An Image Processing Technique

Nur Mutiara Syahrian, Pola Risma, Tresna Dewi

Abstract

Piping setup is very important to ensure the safety and eligibility of the piping system before applied in industry. One of the techniques to facilitate perfect piping setup is by employing pipe monitoring robot. Pipe monitoring robot is designed in this research to monitor cracks or any other defects occur inside a pipe. This automatic monitoring is conducted by the application of image processing with canny edge detection. Canny edge detection method detects the edges or lines of any cracks inside the pipe and processes them to create differences in image, therefore only the cracks can be shown and finally, those cracks can be well analyzed. Canny edge detection has 5 processing techniques that are smoothing, finding gradients, non-maximum suppression, double thresholding, and edge tracking by hysteresis. In this research, the experiment was conducted by letting a robot monitoring new pipe and detecting cracks. Two cracks samples were taken and analyzed. The results show that the best value for smoothing is 10 and 5 for thresholding in getting not too blurred or to sharp result.

Keywords

image processing, edge detection, algoritma canny

Full Text:

PDF

References

Anindya, C, dkk., 2011, Rancang Bangun Prototype Robot Pipe Tracking Dengan Electric Nose Technology Sebagai Detektor Kebocoran, Karsa Cipta, Program Kreativitas Mahasiswa, Jurusan Pendidikan Teknik Elektro FT UNM, Malang.

T. H. Dinh, Q. P. Ha, and Ha, 2016, Computer Vision-based Method for Concrete Crack Detection, 2016 14th International Conference on Control, Automation, Robotics & Vision (ICARCV2016), Thailand.

A. Mohan, and S. Poobal, 2017, Crack Detection using Image Processing: A Critical Review and Analysis, Alexandria Engineering Journal.

http://dx.doi.org/10.1016/j.aej.2017.01.020

Sutoyo, T, dkk., 2009, Teori Pengolahan Citra Digital, Yogyakarta

Danil, C., 2011, Edge Detection dengan Algoritma Canny, Teknik Informatika STMIK IBBI

Zunaidi, A., 2011, Rancang bangun Pendeteksi Tempat Parkir Kosong Berbasis Citra Digital, pp. 5–17, 2011

Riyanto Sigit, Praktikum Pengolahan Citra. Politeknik Elektronika Negeri Surabaya, 2006.

Astuti, Fajar., 2013, Pengolahan Citra Digital Konsep dan Teori, Andi Publisher, Yogyakarta

Munir, Rinaldi., 2004, Pengolahan Citra Digital dengan Pendekatan Algoritmik, Informatika Bandung, Bandung

Ahmad, Usman., 2005, Pengolahan Citra dan Teknik Pemrogrammanya, Graha Ilmu, Yogyakarta

Basuki, Akhmad & F. Palandi, Jozua & Fatchurochman., 2005, Pengolahan Citra Digital menggunakan Visual Basic, Graha Ilmu, Yogyakarta

Gonzales R.C. & Woods R.E., 2002, Digital Image Processing Second Edition, Prentice Hall Inc, New Jersey

Sigit, R., Pramadihanto, D., Setiawardhana & Sulaiman, R., 2005, Sistem Pengenalan Eksprsesi Wajah Secara Real Time, Industrial Electronic Seminar (IES) Proceeedings, Politeknik Elektronika Negeri Surabaya, Surabaya

L. Brethes, P. Menezes, F. Lerasle, J. Hayet., Face Tracking and Hand Gesture Recognition For Human-Robot Interaction, http://www.isr.uc.pt/~paulo/PUBS/icra04b.pdf.

Refbacks

  • There are currently no refbacks.
 

Indexed by:

Referencing Software:

Checked by:

Statistic:

View My Stats


Creative Commons License Kinetik : Game Technology, Information System, Computer Network, Computing, Electronics, and Control by http://kinetik.umm.ac.id is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.