
Cite: Wardana, A., Rakhmatsyah, A., Minarno, A., & Anbiya, D. (2019). Internet of Things Platform for Manage Multiple Message Queuing Telemetry
Transport Broker Server. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 4(3).
doi:http://dx.doi.org/10.22219/kinetik.v4i3.841

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
Journal homepage: http://kinetik.umm.ac.id
ISSN: 2503-2267
Vol. 4, No. 3, August 2019, Pp. 197-206

197

Internet of things platform for manage multiple message queuing
telemetry transport broker server

Aulia Arif Wardana*1, Andrian Rakhmatsyah2, Agus Eko Minarno3, Dhika Rizki Anbiya4

Telkom University, Indonesia 1,2
Universitas Muhammadiyah Malang, Indonesia 3
Badan Pengkajian dan Penerapan Teknologi, Indonesia 4

Article Info Abstract
Keywords:
Internet of Things Platform, Internet of Things,
Message Queuing Telemetry Transport,
MQTT Broker Server

Article history:
Received 26 May 2019
Revised 17 June 2019
Accepted 9 July 2019
Published 30 July 2019

Cite:
Wardana, A., Rakhmatsyah, A., Minarno, A., &
Anbiya, D. (2019). Internet of Things Platform
for Manage Multiple Message Queuing
Telemetry Transport Broker Server. Kinetik:
Game Technology, Information System,
Computer Network, Computing, Electronics,
and Control, 4(3).
doi:http://dx.doi.org/10.22219/kinetik.v4i3.841

* Corresponding author.
Aulia Arif Wardana
E-mail address:
auliawardan@telkomuniversity.ac.id

This study proposed the Internet of Things (IoT) monitoring platform model to
manage multiple Message Queuing Telemetry Transport (MQTT) broker
server. The Broker is a part of the MQTT protocol system to deliver the
message from publisher to subscriber. The single MQTT protocol that setup in
a server just have one broker system. However, many users used more than
one broker to develop their system. One of the problems with the user that use
more than one MQTT broker to develop their system is no recording system
that helps users to record configurations from multi brokers and connected
devices. This can cause to slow the deployment process of the device because
the configuration of the device and broker not properly managed. The platform
built is expected to solve the problem. This proposed platform can manage
multiple MQTT broker server and device configuration from different product or
vendor. The platform also can manage the topic that connects to a registered
broker on the platform. The other advantages of this platform are open source
and can modify to a specific business process. After usability testing and
response time testing, the proposed platform can manage multiple MQTT
broker server, functional to use, and an average of response time from the
platform page is not more than 10 seconds.

 1. Introduction

Internet of Things (IoT) is a technology that connects multiple sensor and device with the cloud over internet
connection [1]. The right choice of communication model in IoT system is the key of success because many service
and device in IoT system are communicated to each other with a large number of connection and exchange data [2].
There are many communication models in the IoT system, one of them is the publish/subscribe communication model.
IoT system is part of a distributed system and the data that produce from the connection is very huge. The
publish/subscribe communication model very suitable with IoT system to handling huge connection of data in the
distributed system [3].

One of protocol that implements publish/subscribe communication model in the IoT system is Message Queuing
Telemetry Transport (MQTT). This protocol is popular in IoT system and applied in many industries [4]. Nowadays, IoT
with MQTT protocol is implemented in many domains such as health, transportation, farming, disaster management,
and other domain that use the large connection to handle [1]. MQTT is specifically designed for the IoT system and
suitable for resource-constrained device [5]. MQTT protocol has three main entities on the system, there are the
publisher, subscriber, and broker. The publisher is an entity that sending data to broker with specific topic and subscriber
is an entity that receiving data from a broker with a specific topic. In IoT system, publisher represented a device that
periodically publishes sensor data, subscriber represented the specific application that subscribe data from publishes
sensor data, and the broker is an entity that hold and route data from the publisher to the subscriber [6],[7].

One of an important entity in MQTT protocol is a broker. The broker is central to communication and handling
huge data from many publishers and subscribers connection [8]. Large connections from publisher and subscriber can
cause the availability of MQTT broker to decrease. When the reliability from the broker is decreased, the single failure
will occur to MQTT broker. The single failure in the MQTT broker can cause packet loss or the broker connection is
down. When the broker connection is down, the subscriber need to re-subscribe the data from broker and publisher
need to re-publish the data to the broker. In the increase of re-subscribe and re-publish load connection, the broker
eventually starts dropping packets [9],[10].

IoT system is integrated of heterogeneous device and system. The deployment of the device and system in IoT
is complex and need a system that can manage the configuration of the system and device [11],[12]. Many IoT system

http://dx.doi.org/10.22219/kinetik.v4i3.841
http://kinetik.umm.ac.id/
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1457736067&1&&2016
http://kinetik.umm.ac.id
http://dx.doi.org/10.22219/kinetik.v4i3.841
https://crossmark.crossref.org/dialog/?doi=10.22219/kinetik.v4i3.841&domain=pdf

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

© 2019 The Authors. Published by Universitas Muhammadiyah Malang
This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/)

198

uses multiple brokers to keep availability from the broker server. Since the increase of the broker server in an IoT
system, the device that connected to the broker also increase. The deployment of the broker and device must be
synchronized well. Many broker and device that connect to each other need to maintain correctly. The configuration of
the broker server (e.g server name, port, credential, and etc) and the configuration of device profile (e.g device id,
credential, and etc) need to save in a single system. The good maintenance from multiple broker and device will affect
to deployment process [13], [14], [15].

Based on the background, to make the user easier to maintain multiple broker and device that connect to each
other, then a system should be created that can manage it on a platform [16], [17]. MQTT protocol does not have
multiple broker management system to manage multiple the broker server [3-10], [16], [18], [19]. Therefore, this study
proposed a platform that manages multiple broker system. The platform will manage the broker connection and manage
the topic from the publisher and subscriber that connect to the broker server.

2. Research Method

This research starts with a process of reviewing research papers in the field of MQTT protocol with the topic of
MQTT broker server availability, then finds a problem that single MQTT broker server not good enough to handle a
large number of publisher and subscriber connection. Some systems anticipate this by using many brokers on the IoT
system that is built. The problem rises up again, the increase of broker means the increase of device too. The system
that manages the multiple broker and device is needed. Later, this research identifies that the MQTT protocol does not
have a system to manage multiple broker server in the literature review process. The proposed internet of things
platform is expected to make easier for the user to manage multiple MQTT broker server. Also, the proposed platform
expected to make the deployment process easier because the information of heterogeneous broker and device is
managed well in one system.

A Platform is part of the Internet of Things system that is located on the highest layer because it deals directly
with the user [3], [20]. The platform is usually used to carry out device management and protocols that are connected
to each other on the internet of things system [16], [21]. The platform must also support different configurations between
heterogeneous systems or devices on the Internet of Things [22], [23], [24]. Based on the internet of things platform
system in general, this research creates a platform that can manage heterogeneous MQTT broker servers and devices
[21], [22], [23].

The platform will be built using the waterfall method. The method is a method commonly used in building software.
Most of the software engineer will make this method to build their software. This method also the simplest way to build
software [24], [25]. The first phase is the analysis phase, this phase is done in the introduction section and the beginning
of research method paragraph. The second phase is the design phase, this phase will be discussed in the proposed
system section. The third phase is the implementation phase, this phase will be explained in the platform implementation
phase. The last phase is the testing phase, this phase will be explained and discussed in the result and discussion
section.

The test method used to test the platform uses the method of Quality of Service (QoS) testing and functional
testing. The functional testing will measure the functionality from the platform to help the user to manage multiple MQTT
broker server and device. The QoS testing will test the time access from the platform. The QoS from the platform also
affects the Quality of Experience (QoE) from the user of the platform [26], [27], [28], [29], [30].

2.1 Proposed System

This research tries to build a prototype internet of things platform to manage multiple MQTT broker servers. The
system architecture from the prototype platform shows in Figure 1. The network architecture illustrated in Figure 1
shows that the platform will connect every publisher and subscriber connected to many broker servers. Each publisher
is an IoT device that has different specifications. The MQTT broker servers also have different vendors and
configuration. The configuration method for each device and MQTT broker will certainly be different, but this platform
will equalize the configuration of each device and MQTT brokers use common standard.

The configuration that has been entered by the user into the platform will be used as a liaison between the
publisher, subscriber, and MQTT broker server. The software architecture from the platform can see in Figure 2, the
diagram consists of 6 layers. The first layer is the web server layer that used to serve the platform. The second layer is
profile layer that consists of The User Manager Module, Monitoring Data View, and Vendor Manager. The user manager
module is used to manage access to users who will use the platform. The monitoring data view module is used to
subscribe to data from the publisher and MQTT broker that has been managed by the platform. The vendor manager
module is used to manage companies or individuals who want to use this platform for their needs.

https://creativecommons.org/licenses/by-sa/4.0/

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Cite: Wardana, A., Rakhmatsyah, A., Minarno, A., & Anbiya, D. (2019). Internet of Things Platform for Manage Multiple Message Queuing Telemetry
Transport Broker Server. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 4(3).
doi:http://dx.doi.org/10.22219/kinetik.v4i3.841

199

Figure 1. System Architecture of The Platform

Figure 2. Software Architecture of The Platform

The third layer is the logic layer that consists of Device Manager, Topic Manager, and Broker Manager. The

device manager module is used to manage devices that will be connected to the MQTT broker. Registered devices will
have a unique ID that is used to identify the device. the topic module and broker module are used to manage topics
that will be used on a broker. Both modules are a unit. The broker module can also configure security such as SSL/TLS
or username and password when the broker uses a security mechanism. After the user makes an input to the device
module and the broker module in the platform, then each device will be assigned to a broker with a specific topic that
set in the broker. All devices that will be connected to the broker must be programmed to adjust the configuration that
has been done on the platform. The fourth layer is The Data Layer that consists of a MySQL database. The database
design for this platform shows in Table 1.

http://dx.doi.org/10.22219/kinetik.v4i3.841

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

© 2019 The Authors. Published by Universitas Muhammadiyah Malang
This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/)

200

Table 1. Database Design

Table Name Column Name Type

devices

id_device int(11)

serial varchar(65)

username varchar(65)

product varchar(65)

date_inserted timestamp

date_registered timestamp

mqtt_server

id_mqttserver int(11)

mqtt_host varchar(65)

mqtt_websocket varchar(65)

mqtt_user varchar(65)

mqtt_password varchar(65)

mqtt_port varchar(65)

mqtt_tls varchar(65)

mqtt_topic varchar(65)

mqtt_vendor varchar(65)

serial_device varchar(65)

The database type used for this platform is a SQL database. The SQL database tables that are the main system

on this platform are devices and mqtt_server. Device tables are used to store profiles of devices, while the mqtt_server
table is used to store MQTT broker server profiles, including what topics should be assigned to devices and MQTT
brokers. The mqtt_server tabel needs two type of port from MQTT broker server, the first port is MQTT TCP port
(normally 1883 or 8883 when in TLS mode), the port is used by device to publish sensor data to MQTT broker server.
The first port is saved in mqtt_host column. The second port is MQTT websocket port, the port is used by the platform
to subscribe data from MQTT broker server. The second port is saved in mqtt_websocket column.

The fifth layer is multiple MQTT broker server that manage by vendor. The last layer is multi IoT device layer that
acts as a publisher. Configuration patterns carried out on this platform are made based on the MQTT broker system in
general. The configuration on this platform is not related to a particular vendor or implementation of MQTT broker server.
This platform can make it easier for users to manage different broker vendors and IoT devices. The limitation of this
platform is traffic from The MQTT broker is not directly control from the platform. This platform is just for broker
management, the user must apply the same configuration with the platform in the deployment process.

2.2 Platform Implementation

The platform code can see in this git repository: https://gitlab.com/kijang-electric/low-cost-IoT-platform.
Management of this platform is very cheap and easy because it is deployed in the hosting environment [12]. The
software environment that uses in development can see in Table 2. This study uses 3 different MQTT broker as a
sample for free MQTT broker server. The different vendor of MQTT broker system that used in this platform shows that
this platform is suitable for manage different MQTT broker vendors.

Table 2. Software Environment used in Implementation

No Name Description

1. Apache Web Server to serve the platform

2. PHP 7.0
Programming language for build
the platform

3. MySQL Database
Database for save data from the
platform

4. Cloud MQTT MQTT Broker Server
5. Hivemq MQTT Broker Server
6. Maqiatto MQTT Broker Server

The platform system starts with the installation process to manage the platform vendor users and admin users

when first access in the browser. The Vendor is a personal user or organization that used this platform for their business
process. After the installation process, the user will log in with a super admin account, then the user will input the device
profile (device ID and vendor device) and broker server profile (host, username, password, port, and SSL option) to the
platform configuration. The next step of configuration in the platform assigns the broker server configuration to device

https://creativecommons.org/licenses/by-sa/4.0/
https://gitlab.com/kijang-electric/low-cost-IoT-platform

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Cite: Wardana, A., Rakhmatsyah, A., Minarno, A., & Anbiya, D. (2019). Internet of Things Platform for Manage Multiple Message Queuing Telemetry
Transport Broker Server. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 4(3).
doi:http://dx.doi.org/10.22219/kinetik.v4i3.841

201

configuration. The platform is supported subscriber system to monitor data flow from the publisher that send data to the
MQTT broker server. The subscriber system monitors the flow of data by device connection.

The implementation architecture of this platform can see in Figure 3. This study uses 3 different of device vendor
(Arduino Uno R3 with Ethernet Shield, Node MCU, and Raspberry Pi 3) and 3 different of MQTT broker server vendor.
The configuration from 3 different MQTT broker server vendor in the platform will deploy to 3 different device vendor.
The Node MCU and Arduino Uno R3 with Ethernet Shield device are programmed using Arduino IDE for deploying the
configuration, then the Raspberry Pi 3 is programmed using python for deploy the configuration. The deployed
configuration used by device to connect to the MQTT broker server.

Figure 3. Implementation Architecture

3. Result and Discussion

The testing for this study use usability testing. The usability testing measures the functionality from the device
configuration process and MQTT broker configuration process. The usability testing also tests the configuration from 3
different vendors and 3 different devices is working properly or not.

3.1 Platform Usability Testing

The usability testing scenario from this research focuses on device and MQTT broker server configuration
process. The testing scenario will implement until the data can send from the device to the MQTT server. The first
usability testing is registering 3 different devices profile to the platform system to creating configuration data from the
devices. The device configuration process starts with register the device profile. The User will input the device vendor
name (e.g Arduino, NodeMCU, or Raspberry) and device ID to the platform.

The result of this testing can see in Figure 4. The platform can register different devices profile, also the device's
profile that already insert can edit or delete from the platform system. After configuration is already input, the device
must program using the same as the configuration in the platform.

The second usability testing is registering 3 different MQTT broker server profile to the platform system to create
configuration data from the MQTT broker server. The MQTT broker server configuration process starts with register the
MQTT broker server profile. The user will input MQTT Host, MQTT Username, MQTT Password, MQTT Port, MQTT
Websocket Port, MQTT TLS, MQTT Topic, MQTT Vendor and Serial Device.

http://dx.doi.org/10.22219/kinetik.v4i3.841

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

© 2019 The Authors. Published by Universitas Muhammadiyah Malang
This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/)

202

Figure 4. Registered Devices

Figure 5. Registered MQTT Broker Server and Topic

Figure 6. Subscribe data from MQTT Broker Server

https://creativecommons.org/licenses/by-sa/4.0/

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Cite: Wardana, A., Rakhmatsyah, A., Minarno, A., & Anbiya, D. (2019). Internet of Things Platform for Manage Multiple Message Queuing Telemetry
Transport Broker Server. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 4(3).
doi:http://dx.doi.org/10.22219/kinetik.v4i3.841

203

The result of this testing can see in Figure 5. The platform can register different MQTT broker server, also the
MQTT broker server profile data that already insert can view, edit or delete from the platform system. After configuring
and determining the topic on the MQTT broker server for each device, the device will be programmed according to the
specified configuration. The result is a device programmed according to the configuration can send data to the MQTT
broker server.Communication on each MQTT broker server must have a username, password, TLS configuration, port,
and address. Therefore, this platform can accept all configurations of each MQTT broker server that is a different vendor.
MQTT broker server that does not have a username and password, or does not have Transport Layer Security (TLS)
configuration can also be configured on this platform system.

After all configuration setup, we will program the device with the same configuration as in the platform. In this
research, we will configure Arduino Uno R3 with the ethernet shield, NodeMCU ESP8266, and Raspberry Pi 3 to
connect in MQTT broker server with the same configuration as in the platform. Arduino Uno R3 with ethernet shield and
NodeMCU ESP8266 programmed using Arduino IDE with C language, then the Raspberry Pi 3 programmed using
python. The result of this testing can see in Figure 6. The platform can subscribe to data from the device. If the
configuration of the device is not the same with the platform, so the platform can not subscribe to the data from the
device.

All usability testing from the platform module can see in Table 3. The usability testing in every module have the
scenario, and the result from the scenario will prove that the module is working properly or not.

Based on the testing result in Table 3, the platform module and feature are working properly. The platform can
properly manage devices and MQTT broker servers. The platform not only has features for managing brokers and
devices but also has other features related to business processes such as user management and vendor management.

The second test is the quality of service from the platform. One measurement that indicates the quality of service
from the website is response time. The testing will measure the response time from the platform. This testing used
response website tools from https://www.webpagetest.org/. The test location was located in Jakarta and used chrome
browser to open the web page. The connection from the internet that used for the test is Cable (5/1 Mbps 28ms RTT).
The result of the testing shows in Figure 7, Figure 8, and Figure 9.

This test will measure website response time from device manager module, MQTT broker manager module, and
subscriber data page. The focus of the testing in those 3 modules because the user will interact more often with this
module when using the platform.

Based on Google data, average response time from the website is not more than 10 second. When the website
has response time more than 10 seconds, it will make users are frustrated and are likely to abandon tasks. They may
or may not come back later [31]. The performance measurement of device manager module in Figure 7 and the
performance measurement of the MQTT broker manager module in Figure 8 is not more than 10 second.

Figure 9 shows that the average response time from subscriber data page is not more than 10 second. The
device manager module, MQTT broker manager module, and subscriber data page response time is acceptable to
access by multiple users.

Table 3. Usability Testing for Device and MQTT Broker Configuration

No Module Name Testing Scenarion Result

1. User Manage
View, Input, Update, and Delete
user profile data in User Manage
module system.

The platform can perform
View, Input, Update, and
Delete user profile data in
User Manage module
system.

2.
Monitoring Data
View

View monitoring data from
publisher. The publisher (device)
configuration same as in the
platform system.

The platform can perform
View, Input, Update, and
Delete user profile data in
User Manage module
system.

3. Vendor Manager
View, Input, Update, and Delete
vendor profile data in Vendor
Manager module system.

The platform can perform
View, Input, Update, and
Delete vendor profile data
in Vendor Manager module
system.

4. Device Manager
View, Input, Update, and Delete
device profile data in Device
Manager module system.

The platform can perform
View, Input, Update, and
Delete device profile data in
Device Manage module
system.

http://dx.doi.org/10.22219/kinetik.v4i3.841
https://www.webpagetest.org/

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

© 2019 The Authors. Published by Universitas Muhammadiyah Malang
This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/)

204

5.
MQTT Broker Server
Manager

View, Input, Update, and Delete
MQTT broker cerver profile data
in Topic Manager and Broker
Manager module system.

The platform can perform
View, Input, Update, and
Delete MQTT broker server
profile data in Topic
Manager and Broker
Manager module system.

Figure 7. Response Time From The Device Manager Module

Figure 8. Response Time From The MQTT Broker Manager

5 Time 10 Time 15 Time 20 Time

List Device Page 2.64 2.59 2.6 2.66

Register Device Page 2.64 2.58 2.59 2.58

Edit Device Page 2.63 2.61 2.59 2.59

2.54

2.56

2.58

2.6

2.62

2.64

2.66

2.68

Se
co

n
d

 (
s)

Number of Access

Average response time from device manager page

List Device Page Register Device Page Edit Device Page

5 Time 10 Time 15 Time 20 Time

List MQTT Broker Page 2.58 2.58 2.58 2.59

Register MQTT Broker Page 2.58 2.66 2.65 2.62

Details MQTT Broker Page 2.55 2.6 2.65 2.63

Edit MQTT Broker Page 2.65 2.63 2.61 2.62

2.48
2.5

2.52
2.54
2.56
2.58

2.6
2.62
2.64
2.66
2.68

A
xi

s
Ti

tl
e

Number of Access

Average response time from MQTT Broker manager page

List MQTT Broker Page Register MQTT Broker Page

Details MQTT Broker Page Edit MQTT Broker Page

https://creativecommons.org/licenses/by-sa/4.0/

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Cite: Wardana, A., Rakhmatsyah, A., Minarno, A., & Anbiya, D. (2019). Internet of Things Platform for Manage Multiple Message Queuing Telemetry
Transport Broker Server. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 4(3).
doi:http://dx.doi.org/10.22219/kinetik.v4i3.841

205

Figure 9. Response Time From The Subscriber Data Page

4. Conclusion

This study proposed a prototype Internet of Things platform to manage multiple MQTT broker server. The platform
purpose is helping the user easier to manage multiple MQTT broker server and device in the Internet of Things system.
After usability testing, the platform is functional to use. The platform is able to manage multiple devices and multiple
MQTT broker server. This study also measures the response time from the website page. Based on response time
testing from MQTT broker manager module, device manager module, and subscriber data page, the response time is
not more than 10 seconds.

In further research, the platform can be developed to do auto routing against the connection traffic that exists on
the MQTT broker server. In addition, the configuration of the device can be generated automatically to make it easier
during the deployment process. The other feature to support the interfacing for mobile application or another system,
this platform will provide web API for universal communication to another system.

5. Acknowledgement

Thank you to the Internet of Things Studio, Telkom University which has become a place for researchers to
develop this journal research. Hopefully, this research can make a major contribution to the advancement of technology
in Indonesia.

References
[1] M. Chernyshev, Z. Baig, O. Bello, and S. Zeadally, “Internet of Things (IoT): Research, Simulators, and Testbeds,” IEEE Internet of Things

Journal., Vol. 5, No. 3, Pp. 1637–1647, 2018. https://doi.org/10.1109/JIOT.2017.2786639
[2] J. Rui and S. Danpeng, “Architecture Design of the Internet of Things Based on Cloud Computing,” in Seventh International Conference on

Measuring Technology and Mechatronics Automation, Pp. 206–209, 2015. https://doi.org/10.1109/ICMTMA.2015.57
[3] P. Lea, Internet of Things for Architects. Packt Publishing, 2018.
[4] H. C. Hwang, J. Park, and J. G. Shon, “Design and Implementation of a Reliable Message Transmission System Based on MQTT Protocol in

IoT,” Wireless Pers Commun., Springer, 2016. https://doi.org/10.1007/s11277-016-3398-2
[5] P. Waher, Learning Internet of Things. Packt Publishing, 2015.
[6] W. Pipatsakulroj, V. Visoottiviseth, and R. Takano, “muMQ: A Lightweight and Scalable MQTT Broker,” in IEEE International Symposium on

Local and Metropolitan Area Networks (LANMAN), 2017. https://doi.org/10.1109/LANMAN.2017.7972165
[7] A. Zabasta, et. al, “MQTT Service Broker for Enabling the Interoperability of Smart City Systems,” in IEEE Energy and Sustainability for Small

Developing Economies (ES2DE), 2018. https://doi.org/10.1109/ES2DE.2018.8494341
[8] P. Jutadhamakorn, et. al, “A Scalable and Low-Cost MQTT Broker Clustering System,” in 2nd International Conference on Information

Technology (INCIT), 2017. https://doi.org/10.1109/INCIT.2017.8257870
[9] S. Sen and A. Balasubramanian, “A Highly Resilient and Scalable Broker Architecture for IoT Applications,” in 10th International Conference

on Communication Systems & Networks (COMSNETS) - Proceeding, Pp. 336–341, 2018. https://doi.org/10.1109/COMSNETS.2018.8328216
[10] Y. Xu, V. Mahendran, and S. Radhakrishnan, “Towards SDN-Based Fog Computing: MQTT Broker Virtualization for Effective and Reliable

Delivery,” in Workshop on Wild and Crazy Ideas on the interplay between IoT and Big Data, 2016.
https://doi.org/10.1109/COMSNETS.2016.7439974

[11] K. Mekki, et. al, “A Comparative Study of LPWAN Technologies for Large-Scale IoT Deployment,” ICT Express., Elsevier, Vol. 5, 2019.
https://doi.org/10.1016/j.icte.2017.12.005

5 Time 10 Time 15 Time 20 Time

Subscribe from Cloud MQTT 2.58 2.56 2.56 2.57

Subscribe from Hivemq 2.59 2.58 2.58 2.57

Subscribe from Maqiatto 2.63 2.61 2.59 2.59

2.52

2.54

2.56

2.58

2.6

2.62

2.64

Se
co

n
d

s
(s

)

Number of Access

Response time from subscribe data page

Subscribe from Cloud MQTT Subscribe from Hivemq Subscribe from Maqiatto

http://dx.doi.org/10.22219/kinetik.v4i3.841
https://doi.org/10.1109/JIOT.2017.2786639
https://doi.org/10.1109/ICMTMA.2015.57
https://books.google.co.id/books?hl=id&lr=&id=3NRJDwAAQBAJ&oi=fnd&pg=PP1&dq=P.+Lea,+Internet+of+Things+for+Architects.+Packt+Publishing,+2018.&ots=jRfE_TPbmq&sig=uqh8rDdY0grZ9J0ABevha5bg0Cc&redir_esc=y#v=onepage&q=P.%20Lea%2C%20Internet%20of%20Things%20for%20Architects.%20Packt%20Publishing%2C%202018.&f=false
https://doi.org/10.1007/s11277-016-3398-2
https://books.google.co.id/books?hl=id&lr=&id=auRrBgAAQBAJ&oi=fnd&pg=PP1&dq=P.+Waher,+Learning+Internet+of+Things.+Packt+Publishing,+2015.&ots=4j_7ITjt09&sig=CmMTBevCKQc2rHkhd-vjSGOo4bM&redir_esc=y#v=onepage&q=P.%20Waher%2C%20Learning%20Internet%20of%20Things.%20Packt%20Publishing%2C%202015.&f=false
https://doi.org/10.1109/LANMAN.2017.7972165
https://doi.org/10.1109/ES2DE.2018.8494341
https://doi.org/10.1109/INCIT.2017.8257870
https://doi.org/10.1109/COMSNETS.2018.8328216
https://doi.org/10.1109/COMSNETS.2016.7439974
https://doi.org/10.1016/j.icte.2017.12.005

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

© 2019 The Authors. Published by Universitas Muhammadiyah Malang
This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/)

206
[12] A. C. F. da Silva, et. al, “OpenTOSCA for IoT: Automating the Deployment of IoT Applications Based on the Mosquitto Message Broker,” in

ACM 6th International Conference on the Internet of Things, 2016. https://doi.org/10.1145/2991561.2998464
[13] W. Li, et. al, “Performance Comparison of Cognitive Radio Sensor Networks for Industrial IoT With Different Deployment Patterns,” in IEEE

Systems Journal, 2014. https://doi.org/10.1109/JSYST.2015.2500518
[14] J. Huang, et. al, “A Novel Deployment Scheme for Green Internet of Things,” in IEEE Internet of Things Journal, 2014.

https://doi.org/10.1109/JIOT.2014.2301819
[15] M. B. Yassein, et. al, “Internet of Things: Survey and Open Issues of MQTT Protocol,” in International Conference on Engineering & MIS

(ICEMIS), 2017. https://doi.org/10.1109/ICEMIS.2017.8273112
[16] J. Yun, I. Ahn, N. Sung, and J. Kim, “A Device Software Platform for Consumer Electronics Based on the Internet of Things,” IEEE Transactions

on Consumer Electronics., Vol. 61, No. 4, Pp. 564–570, 2015. https://doi.org/10.1109/TCE.2015.7389813
[17] R. Banno, et. al, “Dissemination of Edge-Heavy Data on Heterogeneous MQTT Brokers,” in IEEE 6th International Conference on Cloud

Networking (CloudNet), 2017. https://doi.org/10.1109/CloudNet.2017.8071523
[18] P. S. Rompas, A. A. Wardana, and Albarda, “Robust Flood Monitoring Platform using Message Queueing Telemetry Transport Protocol,” in

International Conference on Information Technology Systems and Innovation (ICITSI), 2017. https://doi.org/10.1109/ICITSI.2017.8267949
[19] N. Shofa, A. Rakhmatsyah, S. A. Karimah, “Infusion Monitoring Using WiFi (802.11) through MQTT Protocol,” in 5th International Conference

on Information and Communication Technology (ICoIC7), 2017. https://doi.org/10.1109/ICoICT.2017.8074693
[20] M. A. A. D. Cruz, et. al, “A Reference Model for Internet of Things Middleware,” IEEE Internet of Things Journal., Vol. 5, No. 2, Pp. 871–883,

2018. https://doi.org/10.1109/JIOT.2018.2796561
[21] M. T. Lazarescu, “Design of a WSN Platform for Long-Term Environmental Monitoring for IoT Applications,” IEEE Journal on Emerging and

Selected Topics in Circuits and Systems., Vol. 3, No. 1, Pp. 45–54, 2013. https://doi.org/10.1109/JETCAS.2013.2243032
[22] Y. J. Heo, et. al, “A Lightweight Platform Implementation for Internet of Things,” in 3rd International Conference on Future Internet of Things

and Cloud, pp. 526–531, 2015. https://doi.org/10.1109/FiCloud.2015.29
[23] I. Culic and A. Radovici, “Development Platform for Building Advanced Internet of Things Systems,” in 16th RoEduNet Conference: Networking

in Education and Research (RoEduNet), 2017. https://doi.org/10.1109/ROEDUNET.2017.8123761
[24] R. Elghondakly, S. Moussa, and N. Badr, “Waterfall and Agile Requirements-Based Model for Automated Test Cases Generation,” in IEEE

Seventh International Conference on Intelligent Computing and Information Systems (ICICIS), 2015.
https://doi.org/10.1109/IntelCIS.2015.7397285

[25] M. Kuhrmann, et. al, “Hybrid software and System Development in Practice: Waterfall, Scrum, and Beyond,” in ACM International Conference
on Software and System Process, 2017. https://doi.org/10.1145/3084100.3084104

[26] L. D. Vito, et. al, “An IoT-enabled Multi-sensor Multi-user System for Human Motion Measurements,” in IEEE International Symposium on
Medical Measurements and Applications (MeMeA), 2017. https://doi.org/10.1109/MeMeA.2017.7985877

[27] E. Bocchi, L. D. Cicco, and D. Rossi, “Measuring the Quality of Experience of Web users,” in ACM SIGCOMM Computer Communication
Review, 2016. https://doi.org/10.1145/3027947.3027949

[28] L. Nguyen, et. al, “Modelling of Quality of Experience for Web Traffic,” in IEEE Second International Conference on Network Applications,
Protocols and Services, 2010. https://doi.org/10.1109/NETAPPS.2010.22

[29] M. Varvello, et. al, “EYEORG: A Platform for Crowdsourcing Web Quality Of Experience Measurements,” in ACM Proceedings of the 12th
International on Conference on emerging Networking EXperiments and Technologies, 2016. https://doi.org/10.1145/2999572.2999590

[30] A. E. Minarno, “Web Reporting Service dengan Database Terdistribusi untuk Monitoring Transaksi berbasis Point of Sales,” in Universitas
Muhammadiyah Malang, 2009.

[31] Google, “Measure performance with The RAIL Model”

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/2991561.2998464
https://doi.org/10.1109/JSYST.2015.2500518
https://doi.org/10.1109/JIOT.2014.2301819
https://doi.org/10.1109/ICEMIS.2017.8273112
https://doi.org/10.1109/TCE.2015.7389813
https://doi.org/10.1109/CloudNet.2017.8071523
https://doi.org/10.1109/ICITSI.2017.8267949
https://doi.org/10.1109/ICoICT.2017.8074693
https://doi.org/10.1109/JIOT.2018.2796561
https://doi.org/10.1109/JETCAS.2013.2243032
https://doi.org/10.1109/FiCloud.2015.29
https://doi.org/10.1109/ROEDUNET.2017.8123761
https://doi.org/10.1109/IntelCIS.2015.7397285
https://doi.org/10.1145/3084100.3084104
https://doi.org/10.1109/MeMeA.2017.7985877
https://doi.org/10.1145/3027947.3027949
https://doi.org/10.1109/NETAPPS.2010.22
https://doi.org/10.1145/2999572.2999590
http://eprints.umm.ac.id/id/eprint/1934
http://eprints.umm.ac.id/id/eprint/1934
https://developers.google.com/web/fundamentals/performance/rail#goals-and-guidelines

