
Arwan, A., & Rusdianto, D. (2017). Optimization of Genetic Algorithm Performance Using Naïve
Bayes for Basis Path Generation. Kinetik : Game Technology, Information System, Computer
Network, Computing, Electronics, and Control, 2(4). doi:http://dx.doi.org/10.22219/kinetik.v2i4.370
 Paper submitted on July 31, 2017; Revision on August 17, 2017; Received August 18, 2017

KINETIK, Vol. 2, No. 4, November 2017, Pp. 273-282
 ISSN : 2503-2259
 E-ISSN : 2503-2267

273

Optimization of Genetic Algorithm Performance Using Naïve
Bayes for Basis Path Generation

Achmad Arwan*1, Denny Sagita Rusdianto2
1, 2Universitas Brawijaya

arwan@ub.ac.id*1, denny.sagita@ub.ac.id2

Abstract
 Basis path testing is a method used to identify code defects. The determination of

independent paths on basis path testing can be generated by using Genetic Algorithm. However,
this method has a weakness. In example, the number of iterations can affect the emersion of
basis path. When the iteration is low, it results in the incomplete path occurences. Conversely, if
iteration is plentiful resulting to path occurences, after a certain iteration, unfortunately, the result
does not change. This study aims to perform the optimization of Genetic Algorithm performance
for independent path determination by determining how many iteration levels match the
characteristics of the code. The characteristics of the code used include Node, Edge, VG, NBD,
and LOC. Moreover, Naïve Bayes is a method used to predict the exact number of iterations
based on 17 selected code data into training data, and 16 data into test data. The result of system
accuracy test is able to predict the exact iteration of 93.75% from 16 test data. Time-test results
show that the new system was able to complete an independent search path being faster 15%
than the old system.

Keywords: Basis Path Testing, Genetic Algorithm, Naive Bayes

1. Introduction

Software testing is a process of determining a program code being free from any existing
errors. The testing can be executed using various methods. One of which is White-Box Testing.
White-Box Testing is a testing method employing the source code as a basic knowledge in
searching for code defects [1]. In order to perform White-Box Testing, the source code is
converted into a graph form called CFG (Control Flow Graph) [2], a description of the source code
structure of a program. CFG contains Node-Node representing the commands in a code /a
pseudo code. On the other hand, DD-Graph (Decision-to-decision Graph) becomes a refinement
of CFG, not establishing all codes into a graph despite only the beginning of the code to meet the
branching conditions made by the graph [3]. Furthermore, DD-Graph was utilized as knowledge
for the test scenario. The testing was executed by trying all the paths in the DD-Graph from the
beginning to the end of the code by assigning values to the variables existing on the Node. This
method was then called Basis Path Testing [4].

In Basis Path Testing, there are paths that must be skipped/tested at least once to ensure
an error free code. Obtaining the paths can be completed manually or automatically. The previous
research provides automatic basis path recommendations using Genetic Algorithms [5][6].
Genetic Algorithm is a method mimicing the pattern of chromosome evolution in the genes of
living things. In the Genetic Algorithm, there are chromosome mutation operations, crossing the
chromosomes on the genes. These chromosomes can be generated from codes, branching,
iterations, assignments, etc. Ghiduk's research [5] was able to suggest an independent path on
the Basis Path Testing after a certain iteration. One of the factors determining the success of
finding basis path using genetic algorithms is population and iteration. For certain codes,
independent paths occasionally show complete appearance. However, independent paths, in
other cases, completely disappear. For example, certain codes showed 30 iterations, but in
reaching the last iteration, the independent path combinations were completely unrecognized.
Increasing the number of mutation iterations/cross over might become a possible solution in order
to locate basis paths, a condition called less iteration. Furthermore, a given code, in another
example, was identified to have 100 iterations for the path appearance. Nevertheless, until
reaching the 70th iteration, it turned out all the basis path fully presented, a condition called by
over iteration. The uncertainty of the number of iterations makes the performance of the Ghiduk

http://dx.doi.org/10.22219/kinetik.v2i4.370

ISSN: 2503-2259; E-ISSN: 2503-2267

KINETIK Vol. 2, No. 4, November 2017: 273-282

274

research become less appealing because the user has to experiment with entering the number
of iterations until a basis pathway appears. The complete appearance of the paths, sometimes,
may be easily achieved, but re-attempting using higher iterations may sometimes be needed to
achieve this complete path appearance.

Naïve Bayes is a method of probability-based classification that assumes features being
independent, and classification results are unaffected by the dependency of each other's features
[7]. Naïve Bayes can be used to classify documents, spam, health and many other fields of
science.

Optimizing the use of Genetic Algorithms in searching for independent paths can be
completed by predicting the exact number of iterations, so the users do not have to experiment
with a different number of iterations to get the complete emersion of independent paths. Some
metrics can be used to sharpen the prediction of the exact number of the iterations. The NBD
metric is a metric calculating the complexity of the depth "if" structure [8]. LOC is a metric for
finding code length. Node is a feature to find a number of statements in Java code, and Edge is
the link between one Node with another [2]. V(G) is a complex metric measuring the number of
branches in the source code [9]. The larger the V(G), the more complex the code is. Matrix V(G),
LOC can also be utilized to determine the degree of convenience in code maintenance [10].

This research explores how to determine the corresponding number of iterations with
proper code characteristics of LOC, NBD, Node, Edge, V (G) method with Naïve Bayes
classification method. The research was able to improve the previous research [5] in basis path
generation. Hence, over iteration or less iteration can be avoided. Therefore, performance
improvement can be achieved when generating independent paths.

2. Research Method

This study aims to optimize the Genetic Algorithm by finding the right number of iterations
to generate an independent path using the Naive Bayes classification technique. To achieve this
result, the proper research method will be applied in this study. Figure 1 shows an overview of
the research methods employed in this study.

Figure 1. Research Methods

Start

Literature Study

Data Selection

Feature Selection

Train Data and Test Data

Classification

Test Data Classification

Using GA & Naïve Bayes

System Performance Comparison

Analysis of Results & Discussion

Conclusion

Finish

KINETIK ISSN: 2503-2259; E-ISSN: 2503-2267

Optimization of Genetic Algorithm Performance Using…
Achmad Arwan, Denny Sagita Rusdianto

275

2.1 Literature Study
The literature study is imperative process in obtaining references and searching for

relevant methods. These references are closely related to the topic of independent path
generation, the Genetic Algorithm, and the selection of Java source code features.

2.2 Data Selection

Data selection is a process for selecting Java-based source code used as train data. The
selection of these data was executed by considering the number of lines of code, the complexity
of the code, the number of regions, the number of Nodes, and NBD metrics. The aspects ranged
from small, medium, and large-scale to investigate which features were related to determine the
optimal number of iterations. There were 7 Java files with the ± 40 total number of methods.

2.3 Feature Selection

Feature selection is the process of selecting the characteristics of the source code used
for calssifying the training data. The selection was completed by a simple experiment finding
features closely related to the corresponding number of iterations. The program code was inserted
into the system. Afterwards, it was extracted into the features.

2.3.1 Node
 Nodes are instructions in a single line of code. The instructions referred here are all
instructions in the source code other than the decision instruction (if). In Figure 2, Nodes are
illustrated with a circle having no sign (example no. 2, 5, 6, and11). Nodes were used as attributes
to clarify how many Nodes were in one method. A method with the same VG does not necessarily
have the same Node, so Node is considered a required attribute.

2.3.2 Edge

Edge is an arrow connecting Node with Node or Node with predicate Node (see Figure
2). Principally, all arrows from one instruction to the next instruction are the edge. A method with
the same VG does not necessarily have the same edge, so edges are considered as attributes
needed to be used.

Figure 2. Node & Edge Code Representation

ISSN: 2503-2259; E-ISSN: 2503-2267

KINETIK Vol. 2, No. 4, November 2017: 273-282

276

2.3.3 V(G)
V(G) is the complexity of a code. The value of V(G) is obtained from Node and Edge

calculations. The results of V(G) vary from one to infinity. One means simple, and it grows into
more complex code. the value of V (G) can be calculated by utilizing Equation 1.

 V(G) = [E] − [V] + p (1)

Annotation: E (Edge) : Number of instructions.
 V (Vertices) : Number of vertices.
 P : Number of entry & exit points

2.3.4 LOC Metric

The LOC metric is a measurement of how many lines of code in a given method. The
purpose of using LOC is to measure how many codes are needed to complete a method. There
was higher complexity dispite of fewer lines of code used. However, there was also complexity in
many code lines. This condition underlies why LOC was used as an attribute.

2.3.5 NBD (Nested Block Depth) Metric

NBD metrics are used to find the depth of the if condition in a code. The deeper if nested,
the greater was the value of its NBD. NBD is different from VG because VG recognizes how many
branches, but NBD only measures how deep is the nesting condition in a method.

2.4 Train Data and Test Data Classification

The classification of train data is the process of labeling the train data according to the
optimal number of iterations of the train data. The classification process was executed by manual
experiment. Java files, subsequently, were tested one by one into the implementation application
of Ghiduk research. The steps of train data and test data classification can be seen in Figure 3.

The selection of test data was executed by using Java code data from
http://freesourcecode.net/ and Java project from UB lecturer's. From both sources, it generated 4
projects with the number of method ± 250. Unfortunately, not all of these methods can be used in
the experiment, some because the path was only one or the code cannot be well understood by
the system created. This was because the Spoon Library cannot understand the existing code in
Java. Therefore, there were 33 methods that can be employed. Each of these methods was
independently searched for its path. There were 33 methods that matched the criteria, showing
more than one basis path. These 33 methods were then divided into two (50% each) of train data
as many as 17, and test data by 16. Tain data were used to create a classification model using
Naïve Bayes. Test data were then used to test the system success rate in predicting iterations as
the solution in the optimization method found by Ghiduk.

The selection was manually done (see Figure 3 and 4). Each of these data was stored in
CSV format, in accordance with the format that can be processed by WEKA in classifying the
data. The train data were stored in the datalatih.csv file while the data were stored into the
datauji.csv file. The results of feature selection and classification of train data can be seen in
Table 1. Meanwhile, the results of feature selection and test data classification can be seen in
Table 2.

2.5 Test Data Classification using GA and Naive Bayes

This process is a process of classifying experiments utilizing test data. Test data would
predict the number of iterations and measure the system recommendation to an independent path
after iteration. The results of the system would be compared with the manual data, in recognizing
whether or not the manual basis path had all been recommended by the system. The train data
were then processed using a Naive Bayes classifier using WEKA library. The stages are
illustrated in Figure 4.

Accuracy is a method to measure the classification quality of a system to the predicted
results made by experts [11]. The expert results being the results of manual processes then
become the basis for comparison with the classification results of the system. The level of
accuracy in the result of classification was afterwards measured using Equation 2.

KINETIK ISSN: 2503-2259; E-ISSN: 2503-2267

Optimization of Genetic Algorithm Performance Using…
Achmad Arwan, Denny Sagita Rusdianto

277

2.6 Performance Comparison of Old and New Systems
This process is a process of measuring the performance of the old system found by

Ghiduk (GA without iteration classification) with the new system, the system in this research (GA
with iteration classification using Naïve Bayes). The comparison was completed by measuring the
time elapse in both mentioned systems. The performance comparison was measured by Equation
3.

Figure 3. Manual Data Classification

All Paths Have

Emerged?

3. Generating Basis Path Testing using

Ghiduk approach (Iteration)

2. Iteration=20, Label=’L’

If Iteration=50

4. Iteration=50,

Label=’M’
N

N

Y

5.Iteration=100,

Label=’H’

Y

6. Removing from dataset

N

End

1. Calculating E, N, V(G), LOC, NBD

Start

7. Saving method Class

names, LOC, NBD,

Iteration, Label

to dataset

Y

If Iteration=20

ISSN: 2503-2259; E-ISSN: 2503-2267

KINETIK Vol. 2, No. 4, November 2017: 273-282

278

Table 1. Train Data

No Name E N V(G) LOC NBD Label

1 Edge.printByNode 6 6 2 8 2 L

2 Edge.getEdgeByNode 6 6 2 8 2 L

3 Edge.getSibling 9 7 4 14 3 L

4 Edge.addsucessor 7 6 3 8 2 L

5 Pong.PaintIntro 5 5 2 19 2 L

6 operasiGenetik.rankChromosome 11 9 4 12 4 M

7 DDG.SameEdge 10 8 4 7 3 L

8 DDG.closingBlockEdge 8 7 3 18 3 L

9 DDG.AllEdges 5 5 2 9 2 L

10 DDG.buildExitEdges 11 9 4 107 4 L

11 DDG.printNodeList 6 6 2 10 2 L

12 DDG.setEdgeSucessorWhile 7 6 3 93 3 L

13 DDG.setNodeList 7 6 3 7 3 L

14 PorterStemmer.Step3 84 56 30 41 2 H

15 PorterStemmer.Step4 31 22 11 19 2 H

16 PorterStemmer.m 31 22 11 31 2 H

17 TrafficSimulation.init 6 6 2 25 2 L

Table 2. Test Data

No Name E N V(G) LOC NBD Label

1 dauber.mouseclicked 16 12 6 21 4 H

2 dauber.paint 10 8 4 5 3 L

3 edge.checkedgesucesor 8 7 3 8 2 L

4 operasigenetik.cekkeberadaan 8 7 3 3 3 L

5 operasigenetik.copychromosome 6 6 2 3 2 L

6 operasigenetik.selectbest 8 7 3 13 3 L

7 ddg.printnodelist 6 6 2 10 2 L

8 pong.run 53 38 17 83 5 H

9 pong.initgame1 9 8 3 16 2 L

10 pong.paint 13 10 5 19 2 L

11 pong.paintgame2 10 8 4 13 2 L

12 chromosom.printgene 6 6 2 8 2 L

13 chromosom.setzero 5 5 2 5 2 L

14 chromosom.isequal 8 7 3 10 3 L

15 chromosom.generaterandom 6 6 2 11 3 L

16 porterstemmer.step5 97 62 47 35 2 H

2.7 Analysis of Results and Discussion

This process is a process to explain the outcome of the system, both in terms of the
accuracy of recommendations and in terms of performance of the old system and the new system.
This process also depicted whether the new system will overcome the challenges of the old
system optimization or vice versa. There were no significant results on the comparison results
from the old and new system performance.

KINETIK ISSN: 2503-2259; E-ISSN: 2503-2267

Optimization of Genetic Algorithm Performance Using…
Achmad Arwan, Denny Sagita Rusdianto

279

2.8 Conclusion
This process a concluding statement from the results obtained from this study. Moreover,

it includes the improvement recommendations from the results obtained.

Figure 4. Data Test Classification Using GA & Naive Bayes

Accuracy =
TP + TN

TP + FP + TN + FN

(2)

Efficiency =
Old System Time − New System Time

Old System Time
 (3)

3. Results and Discussion
3.1 System Architecture

The system was built by using: (1) Java programming language; (2) Spoon Library [12]
to get VG and test case generation; (3) Weka [13] as a library classifier; and (4) source code

Predict Number Iteration Using GA &

Naive Bayes

Generate Basis Path Testing

(Number)

All Basis Paths

Appear?

Start

Select File, Calculate VG, NBD, LOC

End

T

Save Data

Basis Path Found
Save Data Not

Found

Y

Create Model with

Train data

ISSN: 2503-2259; E-ISSN: 2503-2267

KINETIK Vol. 2, No. 4, November 2017: 273-282

280

metrics. The input was a Java file that existed in the test data. The Figure 5 illustrates the
architecture of the system established.

Figure 5. System Architecture

The Java file would first compute the number of Nodes, Edge, VG, NBD, LOC assisted
by Spoon and SourceCodeMetric libraries. Afterwards, the results were processed with WEKA
using the Naïve Bayes algorithm to predict the most appropriate iteration count based on the
previous train data. Once predicted, the number of iterations of predicted results would then be
used as parameters to generate independent paths. Consecutively, once a basis path was
identified, the paths would be compared based on its number with the manual data related to the
possibility in acquiring total appearance. If the complete appreance was identified, the data would
be calculated as True. On the other hand, the data would be calculated as wrong data in the case
of incomplete appearance.

The test was executed using 16 data (see Table 2) which were then inserted into the
system (Figure 6). The system received the input in the form of Java file as well as the selected
appropriate method in accordance with the provided 16 data. Each method of test data was tested
one by one into the system to then recorded the number of appearing paths and its duration to
complete the search for the independent path. The system predicted the number of iterations with
the Naïve Bayes model based on the Node, Edge, VG, NBD, LOC parameters obtained from
within the selected code (method). The system then answered the existing independent paths in
the method. The number of paths was then compared with the manual results. Stroring the data
in the correct data would be executed when finding equal number. Conversely, the data would be
stored as wrong data after finding no appropriate number of paths.

The system inputs were file names and method names. The system will then generate
the basic path of the method. The system also recorded the duration in predicting the base path.
The recording results were after that used to compare the possibility to have complete
appearance of basic pathways. The recording results were also used to calculate the speed to
find the code testing base path. Figure 6 shows the interface of the system.

Figure 6. System Interface

SPOON

Naive Bayes Using WEKA

SourceCodeMetrics

Java File
Basis

Path

KINETIK ISSN: 2503-2259; E-ISSN: 2503-2267

Optimization of Genetic Algorithm Performance Using…
Achmad Arwan, Denny Sagita Rusdianto

281

3.2 Test Results Accuracy
The iterative prediction test using GA and Naïve Bayes showed the following results:

Accuracy =
TP + TN

ALL
=

15

16
= 0.937

The Naïve Bayes model can predict the exact number of iterations of 93.75% from the

16-test data. This result can be achieved because the test data and train data variation were
considered low since most of them are labeled L(Low) meaning it only required low iteration to
generate the basis path.

3.3 Comparison of Performance Test Results

The following test execution is a performance improvement test using time elapsed
calculation compared to the old system. Testing was implemented by using the time record to
calculate the duration required by the system in getting an independent path. Table 3 shows the
comparative results between the old system and the new system.

Table 3. Test Data

No Name Label
Iterations

Old New
20 50 100

1 Dauber.mouseClicked H 1105 0 0 1105 1105
2 Dauber.paint L 71 71 71
3 Edge.checkEdgeSucesor L 9 9 9
4 operasiGenetik.Cekkeberadaan L 60 60 60
5 operasiGenetik.copyChromosome L 11 11 11

6 operasiGenetik.selectBest L 36 36 36

7 DDG.printNodeList L 8 8 8

8 Pong.run H 169 1159 8084 9412 7667

9 Pong.initgame1 L 27 27 27

10 Pong.paint L 614 614 614

11 Pong.PaintGame2 L 31 31 31

12 Chromosom.printGene L 12 12 12

13 Chromosom.setZero L 10 10 10

14 Chromosom.isEqual L 6 6 6

15 Chromosom.generateRandom L 10 10 10

16 PorterStemmer.Step5 H 0.4 0 0 0.4 0.4

  11422 9677.4

In the above experimental results, there were 16 data. 13 data have label L and 3 have

label H. Label L is interpreted as requiring low iteration calculated by 20 to produce basis path.
The time frame shows how many seconds required by the system to find a basis path. For codes
labeled L, they managed to performe only one experiment having 20 iterations to get basis path.
Thus, in iteration 50 and 100, there were no contents because 20 iterations were considered as
adequate. Conversely, number 8 code is labeled H. It means that it needed to experiment 3 times
in getting the independent path, so all columns have contents.

Overall, the old system took as long as 11.42 seconds to find all paths. The new system
took as long as 9,678 seconds to find all paths due to a system being able to predict the exact
number of iterations, saving 1.74 seconds. The time efficiency is as follows:

Eficiencey =
Old System − New System

Old system
=

11.42 − 9.678

11.42
=

1.74

11.42
= 0.15%

ISSN: 2503-2259; E-ISSN: 2503-2267

KINETIK Vol. 2, No. 4, November 2017: 273-282

282

4. Conclusions and Future Works
 Performance optimization of the application of Genetic Algorithms to find independent
paths in the source code was completed by using features in Edge, Node, VG, NBD, and LOC.
The features were then extracted from the code to be used as train data to classify the exact
number of iterations using the Naïve Bayes classification model. 17 data were used as train data.
16 data were used for test data. The measurement of classification accuracy was done to
measure to what extent Naïve Bayes can predict the exact number of iterations. The result is a
system capable of predicting the exact number of iterations of 93.75% from 16 test data. The
measurement time optimization was used to measure time efficiency between the old system and
the new system. The optimization result states the new system was 15% faster than the old
system.
 In the future, the researchers will try to implement Graph theory to generate basis path
since having significant correlation with a graph used such as BFS, Dijkstra.

References
[1] I. Sommerville, "Software Engineering," 9th ed. Pearson, 2011.
[2] V. Elodie, "White Box Coverage and Control Flow Graphs," Pp. 1–33, 2011.
[3] A. Bertolino, R. Mirandola, and E. Peciola, "A Case Study in Branch Testing Automation,

Journal of Systems and Software," Vol. 38, No. 1, Pp. 47–59, 1997.
[4] F. Zapata, A. Akundi, R. Pineda, and E. Smith, "Basis Path Analysis for Testing Complex

System of Systems, Procedia Computer Science," Vol. 20, Pp. 256–261, 2013.
[5] A. Ghiduk, M. R. Girgis, and A. S. Ghiduk, "Automatic Generation of Data Flow Test Paths

Using a Genetic Algorithm," February, 2014.
[6] W. Xibo and S. Na, "Automatic Test Data Generation for Path Testing Using Genetic

Algorithms,” 2011.
[7] I. Rash, “An Empirical Study of the Naive {Bayes} Classifier,” January 2001, 2001.
[8] S. Herbold, J. Grabowski, and S. Waack, “Calculation and Optimization of Thresholds for

Sets of Software Metrics,” Empirical Software Engineering, Vol. 16, No. 6, Pp. 812–841,
2011.

[9] T. Ostrand, “White-Box Testing,” Encyclopedia of Software Engineering, 2002.
[10] D. Kafura and G. R. Reddy, “The Use of Software Complexity Metrics in Software

Maintenance,” IEEE Transactions on Software Engineering, Vol. SE-13, No. 3, Pp. 335–343,
1987.

[11] A. Arwan, M. Sidiq, B. Priyambadha, H. Kristianto, and R. Sarno, “Ontology and Semantic
Matching for Diabetic Food Recommendations,” Proceedings - 2013 International
Conference on Information Technology and Electrical Engineering: "Intelligent and Green
Technologies for Sustainable Development", ICITEE 2013, Pp. 170–175, October, 2013.

[12] R. Pawlak et al., “Spoon: A Library for Implementing Analyses and Transformations of Java
Source Code,” 2015.

[13] E. Frank, M. A. Hall, and I. H. Witten, “The WEKA Workbench. Online Appendix for Data
Mining: Practical Machine Learning Tools and Techniques,” Morgan Kaufmann, Fourth Ed.,
2016.

