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Abstract 
 Basis path testing is a method used to identify code defects. The determination of 

independent paths on basis path testing can be generated by using Genetic Algorithm. However, 
this method has a weakness. In example, the number of iterations can affect the emersion of 
basis path. When the iteration is low, it results in the incomplete path occurences.  Conversely, if 
iteration is plentiful resulting to path occurences, after a certain iteration, unfortunately, the result 
does not change. This study aims to perform the optimization of Genetic Algorithm performance 
for independent path determination by determining how many iteration levels match the 
characteristics of the code. The characteristics of the code used include Node, Edge, VG, NBD, 
and LOC. Moreover, Naïve Bayes is a method used to predict the exact number of iterations 
based on 17 selected code data into training data, and 16 data into test data. The result of system 
accuracy test is able to predict the exact iteration of 93.75% from 16 test data. Time-test results 
show that the new system was able to complete an independent search path being faster 15% 
than the old system. 
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1. Introduction 

Software testing is a process of determining a program code being free from any existing 
errors. The testing can be executed using various methods. One of which is White-Box Testing. 
White-Box Testing is a testing method employing the source code as a basic knowledge in 
searching for code defects [1]. In order to perform White-Box Testing, the source code is 
converted into a graph form called CFG (Control Flow Graph) [2], a description of the source code 
structure of a program. CFG contains Node-Node representing the commands in a code /a 
pseudo code. On the other hand, DD-Graph (Decision-to-decision Graph) becomes a refinement 
of CFG, not establishing all codes into a graph despite only the beginning of the code to meet the 
branching conditions made by the graph [3]. Furthermore, DD-Graph was utilized as knowledge 
for the test scenario. The testing was executed by trying all the paths in the DD-Graph from the 
beginning to the end of the code by assigning values to the variables existing on the Node. This 
method was then called Basis Path Testing [4]. 

In Basis Path Testing, there are paths that must be skipped/tested at least once to ensure 
an error free code. Obtaining the paths can be completed manually or automatically. The previous 
research provides automatic basis path recommendations using Genetic Algorithms [5][6]. 
Genetic Algorithm is a method mimicing the pattern of chromosome evolution in the genes of 
living things. In the Genetic Algorithm, there are chromosome mutation operations, crossing the 
chromosomes on the genes. These chromosomes can be generated from codes, branching, 
iterations, assignments, etc. Ghiduk's research [5] was able to suggest an independent path on 
the Basis Path Testing after a certain iteration. One of the factors determining the success of 
finding basis path using genetic algorithms is population and iteration. For certain codes, 
independent paths occasionally show complete appearance. However, independent paths, in 
other cases, completely disappear. For example, certain codes showed 30 iterations, but in 
reaching the last iteration, the independent path combinations were completely unrecognized. 
Increasing the number of mutation iterations/cross over might become a possible solution in order 
to locate basis paths, a condition called less iteration. Furthermore, a given code, in another 
example, was identified to have 100 iterations for the path appearance. Nevertheless, until 
reaching the 70th iteration, it turned out all the basis path fully presented, a condition called by 
over iteration. The uncertainty of the number of iterations makes the performance of the Ghiduk 
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research become less appealing because the user has to experiment with entering the number 
of iterations until a basis pathway appears. The complete appearance of the paths, sometimes, 
may be easily achieved, but re-attempting using higher iterations may sometimes be needed to 
achieve this complete path appearance. 

Naïve Bayes is a method of probability-based classification that assumes features being 
independent, and classification results are unaffected by the dependency of each other's features 
[7]. Naïve Bayes can be used to classify documents, spam, health and many other fields of 
science.    

Optimizing the use of Genetic Algorithms in searching for independent paths can be 
completed by predicting the exact number of iterations, so the users do not have to experiment 
with a different number of iterations to get the complete emersion of independent paths. Some 
metrics can be used to sharpen the prediction of the exact number of the iterations. The NBD 
metric is a metric calculating the complexity of the depth "if" structure [8]. LOC is a metric for 
finding code length. Node is a feature to find a number of statements in Java code, and Edge is 
the link between one Node with another [2]. V(G) is a complex metric measuring the number of 
branches in the source code [9]. The larger the V(G), the more complex the code is. Matrix V(G), 
LOC can also be utilized to determine the degree of convenience in code maintenance [10].  

This research explores how to determine the corresponding number of iterations with 
proper code characteristics of LOC, NBD, Node, Edge, V (G) method with Naïve Bayes 
classification method. The research was able to improve the previous research [5] in basis path 
generation. Hence, over iteration or less iteration can be avoided. Therefore, performance 
improvement can be achieved when generating independent paths. 

 
2. Research Method 

This study aims to optimize the Genetic Algorithm by finding the right number of iterations 
to generate an independent path using the Naive Bayes classification technique. To achieve this 
result, the proper research method will be applied in this study. Figure 1 shows an overview of 
the research methods employed in this study.  

 

 
 

Figure 1. Research Methods 
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2.1 Literature Study 
The literature study is imperative process in obtaining references and searching for 

relevant methods. These references are closely related to the topic of independent path 
generation, the Genetic Algorithm, and the selection of Java source code features. 
 
2.2 Data Selection 

Data selection is a process for selecting Java-based source code used as train data. The 
selection of these data was executed by considering the number of lines of code, the complexity 
of the code, the number of regions, the number of Nodes, and NBD metrics. The aspects ranged 
from small, medium, and large-scale to investigate which features were related to determine the 
optimal number of iterations. There were 7 Java files with the ± 40 total number of methods. 
 
2.3 Feature Selection 

Feature selection is the process of selecting the characteristics of the source code used 
for calssifying the training data. The selection was completed by a simple experiment finding 
features closely related to the corresponding number of iterations. The program code was inserted 
into the system. Afterwards, it was extracted into the features.  
 
2.3.1 Node  
 Nodes are instructions in a single line of code. The instructions referred here are all 
instructions in the source code other than the decision instruction (if). In Figure 2, Nodes are 
illustrated with a circle having no sign (example no. 2, 5, 6, and11). Nodes were used as attributes 
to clarify how many Nodes were in one method. A method with the same VG does not necessarily 
have the same Node, so Node is considered a required attribute. 
 
2.3.2 Edge 

Edge is an arrow connecting Node with Node or Node with predicate Node (see Figure 
2). Principally, all arrows from one instruction to the next instruction are the edge. A method with 
the same VG does not necessarily have the same edge, so edges are considered as attributes 
needed to be used. 
 

 

Figure 2. Node & Edge Code Representation 
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2.3.3 V(G)  
V(G) is the complexity of a code. The value of V(G) is obtained from Node and Edge 

calculations. The results of V(G) vary from one to infinity. One means simple, and it grows into 
more complex code. the value of V (G) can be calculated by utilizing Equation 1. 

 
  V(G) = [E] −  [V]  + p                    (1) 
 

Annotation:  E (Edge) :  Number of instructions. 
  V (Vertices) :  Number of vertices. 
  P  :  Number of entry & exit points 
 
2.3.4 LOC Metric 

The LOC metric is a measurement of how many lines of code in a given method. The 
purpose of using LOC is to measure how many codes are needed to complete a method. There 
was higher complexity dispite of fewer lines of code used. However, there was also complexity in 
many code lines. This condition underlies why LOC was used as an attribute. 
 
2.3.5 NBD (Nested Block Depth) Metric 

NBD metrics are used to find the depth of the if condition in a code. The deeper if nested, 
the greater was the value of its NBD. NBD is different from VG because VG recognizes how many 
branches, but NBD only measures how deep is the nesting condition in a method.  

 
2.4 Train Data and Test Data Classification 

The classification of train data is the process of labeling the train data according to the 
optimal number of iterations of the train data. The classification process was executed by manual 
experiment. Java files, subsequently, were tested one by one into the implementation application 
of Ghiduk research. The steps of train data and test data classification can be seen in Figure 3. 

The selection of test data was executed by using Java code data from 
http://freesourcecode.net/ and Java project from UB lecturer's. From both sources, it generated 4 
projects with the number of method ± 250. Unfortunately, not all of these methods can be used in 
the experiment, some because the path was only one or the code cannot be well understood by 
the system created. This was because the Spoon Library cannot understand the existing code in 
Java. Therefore, there were 33 methods that can be employed. Each of these methods was 
independently searched for its path. There were 33 methods that matched the criteria, showing 
more than one basis path. These 33 methods were then divided into two (50% each) of train data 
as many as 17, and test data by 16. Tain data were used to create a classification model using 
Naïve Bayes. Test data were then used to test the system success rate in predicting iterations as 
the solution in the optimization method found by Ghiduk. 

The selection was manually done (see Figure 3 and 4). Each of these data was stored in 
CSV format, in accordance with the format that can be processed by WEKA in classifying the 
data. The train data were stored in the datalatih.csv file while the data were stored into the 
datauji.csv file. The results of feature selection and classification of train data can be seen in 
Table 1. Meanwhile, the results of feature selection and test data classification can be seen in 
Table 2. 

 
2.5 Test Data Classification using GA and Naive Bayes  

This process is a process of classifying experiments utilizing test data. Test data would 
predict the number of iterations and measure the system recommendation to an independent path 
after iteration. The results of the system would be compared with the manual data, in recognizing 
whether or not the manual basis path had all been recommended by the system. The train data 
were then processed using a Naive Bayes classifier using WEKA library. The stages are 
illustrated in Figure 4.  

Accuracy is a method to measure the classification quality of a system to the predicted 
results made by experts [11]. The expert results being the results of manual processes then 
become the basis for comparison with the classification results of the system. The level of 
accuracy in the result of classification was afterwards measured using Equation 2. 
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2.6 Performance Comparison of Old and New Systems  
This process is a process of measuring the performance of the old system found by 

Ghiduk (GA without iteration classification) with the new system, the system in this research (GA 
with iteration classification using Naïve Bayes). The comparison was completed by measuring the 
time elapse in both mentioned systems. The performance comparison was measured by Equation 
3. 
 

 

Figure 3. Manual Data Classification  
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Table 1. Train Data  

No Name E N V(G) LOC NBD Label 

1 Edge.printByNode 6 6 2 8 2 L 

2 Edge.getEdgeByNode 6 6 2 8 2 L 

3 Edge.getSibling 9 7 4 14 3 L 

4 Edge.addsucessor 7 6 3 8 2 L 

5 Pong.PaintIntro 5 5 2 19 2 L 

6 operasiGenetik.rankChromosome 11 9 4 12 4 M 

7 DDG.SameEdge 10 8 4 7 3 L 

8 DDG.closingBlockEdge 8 7 3 18 3 L 

9 DDG.AllEdges 5 5 2 9 2 L 

10 DDG.buildExitEdges 11 9 4 107 4 L 

11 DDG.printNodeList 6 6 2 10 2 L 

12 DDG.setEdgeSucessorWhile 7 6 3 93 3 L 

13 DDG.setNodeList 7 6 3 7 3 L 

14 PorterStemmer.Step3 84 56 30 41 2 H 

15 PorterStemmer.Step4 31 22 11 19 2 H 

16 PorterStemmer.m 31 22 11 31 2 H 

17 TrafficSimulation.init 6 6 2 25 2 L 

 
Table 2. Test Data  

No Name E N V(G) LOC NBD Label 

1 dauber.mouseclicked 16 12 6 21 4 H 

2 dauber.paint 10 8 4 5 3 L 

3 edge.checkedgesucesor 8 7 3 8 2 L 

4 operasigenetik.cekkeberadaan 8 7 3 3 3 L 

5 operasigenetik.copychromosome 6 6 2 3 2 L 

6 operasigenetik.selectbest 8 7 3 13 3 L 

7 ddg.printnodelist 6 6 2 10 2 L 

8 pong.run 53 38 17 83 5 H 

9 pong.initgame1 9 8 3 16 2 L 

10 pong.paint 13 10 5 19 2 L 

11 pong.paintgame2 10 8 4 13 2 L 

12 chromosom.printgene 6 6 2 8 2 L 

13 chromosom.setzero 5 5 2 5 2 L 

14 chromosom.isequal 8 7 3 10 3 L 

15 chromosom.generaterandom 6 6 2 11 3 L 

16 porterstemmer.step5 97 62 47 35 2 H 

 
2.7 Analysis of Results and Discussion 

This process is a process to explain the outcome of the system, both in terms of the 
accuracy of recommendations and in terms of performance of the old system and the new system. 
This process also depicted whether the new system will overcome the challenges of the old 
system optimization or vice versa. There were no significant results on the comparison results 
from the old and new system performance. 
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2.8 Conclusion 
This process a concluding statement from the results obtained from this study. Moreover, 

it includes the improvement recommendations from the results obtained. 
 

 

Figure 4. Data Test Classification Using GA & Naive Bayes 
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metrics. The input was a Java file that existed in the test data. The Figure 5 illustrates the 
architecture of the system established. 

 

 

Figure 5. System Architecture 
 

The Java file would first compute the number of Nodes, Edge, VG, NBD, LOC assisted 
by Spoon and SourceCodeMetric libraries. Afterwards, the results were processed with WEKA 
using the Naïve Bayes algorithm to predict the most appropriate iteration count based on the 
previous train data. Once predicted, the number of iterations of predicted results would then be 
used as parameters to generate independent paths. Consecutively, once a basis path was 
identified, the paths would be compared based on its number with the manual data related to the 
possibility in acquiring total appearance. If the complete appreance was identified, the data would 
be calculated as True. On the other hand, the data would be calculated as wrong data in the case 
of incomplete appearance. 

The test was executed using 16 data (see Table 2) which were then inserted into the 
system (Figure 6). The system received the input in the form of Java file as well as the selected 
appropriate method in accordance with the provided 16 data. Each method of test data was tested 
one by one into the system to then recorded the number of appearing paths and its duration to 
complete the search for the independent path. The system predicted the number of iterations with 
the Naïve Bayes model based on the Node, Edge, VG, NBD, LOC parameters obtained from 
within the selected code (method). The system then answered the existing independent paths in 
the method. The number of paths was then compared with the manual results. Stroring the data 
in the correct data would be executed when finding equal number. Conversely, the data would be 
stored as wrong data after finding no appropriate number of paths. 

The system inputs were file names and method names. The system will then generate 
the basic path of the method. The system also recorded the duration in predicting the base path. 
The recording results were after that used to compare the possibility to have complete 
appearance of basic pathways. The recording results were also used to calculate the speed to 
find the code testing base path. Figure 6 shows the interface of the system.  

 

 

Figure 6. System Interface 

 

SPOON 

Naive Bayes Using WEKA 

SourceCodeMetrics 

Java File 
Basis 

Path 



KINETIK                  ISSN: 2503-2259; E-ISSN: 2503-2267 

  

Optimization of Genetic Algorithm Performance Using…  
Achmad Arwan, Denny Sagita Rusdianto 

281 

3.2 Test Results Accuracy  
The iterative prediction test using GA and Naïve Bayes showed the following results: 

 

Accuracy =
TP + TN

ALL
=

15

16
= 0.937 

 
The Naïve Bayes model can predict the exact number of iterations of 93.75% from the 

16-test data. This result can be achieved because the test data and train data variation were 
considered low since most of them are labeled L(Low) meaning it only required low iteration to 
generate the basis path. 

 
3.3 Comparison of Performance Test Results 

The following test execution is a performance improvement test using time elapsed 
calculation compared to the old system. Testing was implemented by using the time record to 
calculate the duration required by the system in getting an independent path. Table 3 shows the 
comparative results between the old system and the new system. 

 
Table 3. Test Data  

No Name Label 
Iterations 

Old New 
20 50 100 

1 Dauber.mouseClicked H 1105 0 0 1105 1105 
2 Dauber.paint L 71     71 71 
3 Edge.checkEdgeSucesor L 9     9 9 
4 operasiGenetik.Cekkeberadaan L 60     60 60 
5 operasiGenetik.copyChromosome L 11     11 11 

6 operasiGenetik.selectBest L 36     36 36 

7 DDG.printNodeList L 8     8 8 

8 Pong.run H 169 1159 8084 9412 7667 

9 Pong.initgame1 L 27     27 27 

10 Pong.paint L 614     614 614 

11 Pong.PaintGame2 L 31     31 31 

12 Chromosom.printGene L 12     12 12 

13 Chromosom.setZero L 10     10 10 

14 Chromosom.isEqual L 6     6 6 

15 Chromosom.generateRandom L 10     10 10 

16 PorterStemmer.Step5 H 0.4 0 0 0.4 0.4 

      11422 9677.4 

 
In the above experimental results, there were 16 data. 13 data have label L and 3 have 

label H. Label L is interpreted as requiring low iteration calculated by 20 to produce basis path. 
The time frame shows how many seconds required by the system to find a basis path. For codes 
labeled L, they managed to performe only one experiment having 20 iterations to get basis path. 
Thus, in iteration 50 and 100, there were no contents because 20 iterations were considered as 
adequate. Conversely, number 8 code is labeled H. It means that it needed to experiment 3 times 
in getting the independent path, so all columns have contents. 

Overall, the old system took as long as 11.42 seconds to find all paths. The new system 
took as long as 9,678 seconds to find all paths due to a system being able to predict the exact 
number of iterations, saving 1.74 seconds. The time efficiency is as follows: 

 

Eficiencey =
Old System − New System

Old system 
=

11.42 − 9.678

11.42
=

1.74

11.42
= 0.15% 
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4. Conclusions and Future Works 
 Performance optimization of the application of Genetic Algorithms to find independent 
paths in the source code was completed by using features in Edge, Node, VG, NBD, and LOC. 
The features were then extracted from the code to be used as train data to classify the exact 
number of iterations using the Naïve Bayes classification model. 17 data were used as train data. 
16 data were used for test data. The measurement of classification accuracy was done to 
measure to what extent Naïve Bayes can predict the exact number of iterations. The result is a 
system capable of predicting the exact number of iterations of 93.75% from 16 test data. The 
measurement time optimization was used to measure time efficiency between the old system and 
the new system. The optimization result states the new system was 15% faster than the old 
system. 
  In the future, the researchers will try to implement Graph theory to generate basis path 
since having significant correlation with a graph used such as BFS, Dijkstra. 
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