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This study addressed leaf segmentation in open nursery environments for 
Eucalyptus pellita seedlings, where fluctuating illumination, cluttered 
backgrounds, and overlapping foliage had hindered reliable monitoring at 
operational scale. We proposed a Modified U-Net that integrated a ResNet-50 
encoder for high-resolution feature extraction, L2 regularization in the decoder 
to improve generalization, and a composite binary cross-entropy plus Dice loss 
to balance pixel-level accuracy with shape conformity. We assembled 2,424 
RGB images from an operational nursery and evaluated three architectures 
(Modified U-Net as the primary model, SegNet, and DeepLabv3+) under 
cloudy, sunny, and scorching illumination. We conducted inference at native 
resolution and summarized per-image metrics using medians with interquartile 
ranges, followed by nonparametric significance testing. The Modified U-Net 
consistently outperformed the baselines across all scenarios, achieving 
median Dice coefficients of 0.872 (cloudy), 0.841 (sunny), and 0.854 
(scorching), with corresponding Intersection over Union values of 0.773, 0.725, 
and 0.745. A Kruskal-Wallis test on per-image Dice and Intersection over Union 
yielded no significant differences across lighting conditions (H = 4.012, p = 
0.1345), indicating stable performance under natural illumination variability. 
Qualitative overlays revealed localized errors, including glare-induced false 
positives in sunny scenes and shadow-related artifacts under scorching light, 
which did not materially shift global overlap distributions. We concluded that 
the proposed architecture delivered robust, high-fidelity segmentation in 
realistic nursery conditions and provided a practical basis for field deployment, 
with further gains expected from glare- and shadow-aware augmentation and 
lightweight optimization for near real-time inference on edge devices. 

 
1. Introduction 

Indonesia is a megadiverse country with a substantial contribution to the forestry sector, particularly through the 
management of Industrial Forest Plantations (IFP) [1]. According to Statistics Indonesia [2], national roundwood 
production reached 68.22 million m³, dominated by Acacia (56.61%, approximately 38.6 million m³) and Eucalyptus 
(41.68%, approximately 28.44 million m³). The increasing use of Eucalyptus pellita is closely linked to a policy-driven 
shift from peatlands to mineral soils [3]. Among Eucalyptus species, Eucalyptus pellita is widely cultivated by the pulp 
and paper industry due to its rapid growth and broad ecological adaptability [4]. In IFP operations, the nursery phase is 
critical because early biotic and abiotic disturbances can significantly reduce productivity and quality in subsequent 
growth stages [5]. Accurate and continuous seedling health monitoring is therefore essential for effective and 
sustainable silvicultural practices [6]. 

Conventional monitoring methods that rely on manual visual inspection face multiple limitations, including 
inefficient use of time, dependence on skilled personnel, low reproducibility, and inconsistent accuracy at nursery scale 
[7]. These limitations have encouraged the development of AI-based approaches that leverage digital imagery acquired 
by unmanned aerial vehicles (UAVs), RGB cameras, or handheld optical devices [8]. In recent years, deep learning-
based image segmentation has become a robust solution in computer vision for agriculture, enabling precise detection 
and mapping of plant structures [9]. However, studies using U-Net variants, SegNet, and DeepLab families, while 
effective in controlled settings, often experience performance drops under fluctuating illumination and cluttered 
backgrounds, especially at high resolution [10]. 

Leaf segmentation in open nursery environments remains particularly challenging [11]. Variations in lighting 
(cloudy, sunny, and scorching), complex backgrounds, and overlapping foliage frequently reduce model performance 
[12]. Photometric inconsistency caused by shadows, specular highlights, and overexposure blurs object boundaries and 
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triggers segmentation errors [13]. These early-stage errors can propagate and reduce the accuracy of downstream 
tasks, including defoliation assessment and disease detection [14]. Despite the growing number of studies on leaf 
segmentation in agricultural research, systematic investigations focusing on Eucalyptus pellita seedlings in open 
nursery conditions are still limited [15]. This gap is critical because seedlings represent the most vulnerable stage in 
IFP operations, and the lack of robust segmentation models constrains the early detection and management of health-
related risks in forestry nurseries [6]. 

To address these challenges, this study proposes a Modified U-Net specifically optimized for outdoor leaf 
segmentation. The model incorporates three targeted enhancements: a ResNet-50 encoder to strengthen high-
resolution feature extraction, L2 regularization in the decoder to improve generalization, and a composite Binary Cross-
Entropy and Dice loss to balance pixel-level accuracy with shape conformity under class imbalance. These 
modifications are systematically evaluated under three natural lighting scenarios (cloudy, sunny, and scorching) using 
a large dataset of Eucalyptus pellita seedlings. The novelty of this work lies in combining architectural improvements 
with rigorous field-based validation on a high-value forestry species. Unlike previous studies that emphasize laboratory 
or simplified settings, this research explicitly addresses the gap in robust segmentation for Eucalyptus pellita seedlings 
under complex real-world nursery environments, providing a framework with both scientific novelty and operational 
relevance. 

This work makes three contributions. First, we introduce a Modified U-Net tailored for outdoor leaf segmentation 
on Eucalyptus pellita seedlings, combining a ResNet-50 encoder for high-resolution feature extraction, L2-regularized 
decoder layers to improve generalization, and a composite Binary Cross-Entropy plus Dice loss that balances pixel 
accuracy with shape fidelity under class imbalance. Second, we deliver a field-validated evaluation under three natural 
lighting scenarios (cloudy, sunny, and scorching) on a large, real-world nursery dataset, reporting quantitative and 
qualitative results with rigorous statistics (Kruskal–Wallis with epsilon-squared effect size) and median [IQR] summaries 
for transparent, reproducible comparison. Third, we demonstrate consistent gains over SegNet and DeepLab families 
across lighting conditions on Dice and IoU, with no statistically significant differences across illumination and negligible 
effect sizes, and we distill deployment-oriented guidance (e.g., illumination-aware augmentation and acquisition 
practices) to support robust nursery operations. 

 
2. Research Method 

The research methodology was divided into two main phases. The first phase was data preparation, which 
included image acquisition, preprocessing, annotation, and dataset splitting. This phase ensured that the dataset 
captured the variability of natural lighting conditions in the field. The second phase was model development and 
evaluation, which involved the design and training of three architectures (Modified U-Net as the primary model, with 
SegNet and DeepLabv3+ as baselines), model optimization, and quantitative as well as statistical performance 
evaluation. A schematic representation of the workflow is presented in Figure 1, showing the sequential process from 
raw image collection to model evaluation. This approach was designed to address existing research gaps and to meet 
the operational needs of large-scale nursery management. 

 

 
Figure 1. Workflow of the Proposed Leaf Segmentation Model using the Modified U-Net 

 

2.1 Data Preparation 
Image acquisition was conducted on Eucalyptus pellita seedlings in an intensively managed open nursery to 

capture operational field conditions representative of Industrial Forest Plantations [16]. Images were collected using a 
Logitech RGB USB 1080p camera connected to an Intel NUC i7 mini-PC. The camera was mounted in a fixed position 
with consistent distance and nadir angle using a boom sprayer rig, which minimized perspective distortion and reduced 
vibration or operator shadows. Acquisition was performed every morning between 07:00 and 08:00 before irrigation to 
ensure dry leaves, avoid water-induced reflections, and maintain relatively stable natural illumination. All images were 
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recorded at their native resolution of 1920 × 1080 pixels and preserved without downscaling. For training, images were 
resized to 1920 × 1088 pixels to meet the padding requirements of multi-stage downsampling architectures while 
maintaining aspect ratio. Illumination conditions were categorized into three representative scenarios, namely cloudy, 
sunny, and scorching, each collected across multiple days to capture temporal variability in lighting and background 
complexity [13], [17]. Binary masks were manually annotated using dedicated labeling software under standardized 
annotation guidelines by two independent annotators. Annotation reliability was verified through stratified random 
sampling of 30 image–mask pairs, which achieved a Cohen’s Kappa of 0.9628, indicating very high consistency [18]. 

To improve robustness against environmental heterogeneity, online data augmentation was applied during 
training with randomized transformations in each batch [19]. Augmentation techniques were carefully selected to reflect 
realistic variations in the nursery environment. Brightness and contrast adjustments simulated natural illumination 
changes such as shading from clouds or intense sunlight [20]. CLAHE and histogram equalization enhanced local and 
global contrast to improve boundary visibility under uneven lighting [21]. Random gamma correction altered luminance 
distribution to mimic overexposure or underexposure, while HSV adjustments modified hue, saturation, and value to 
capture leaf coloration variability caused by lighting [22]. Geometric transformations such as horizontal and vertical 
flipping increased orientation diversity, reflecting different planting layouts and overlapping seedlings [23]. Random 
rotation and zoom were also applied to simulate varied leaf orientations and scale differences, reflecting changes in 
seedling position and camera distance in the nursery. Gaussian blur was introduced to reproduce motion blur or minor 
defocus, thereby improving resilience to imperfect capture conditions [24]. This augmentation strategy ensured that 
each epoch generated unique samples, reduced the risk of overfitting, and strengthened the model’s ability to generalize 
under diverse field conditions. 

 
2.2 Dataset Summary 

The dataset was specifically designed to capture the visual heterogeneity of open nursery environments where 
Eucalyptus pellita seedlings are cultivated. A total of 2,424 images were collected and systematically divided into three 
subsets: 1,939 images for training (80%), 242 images for validation (10%), and 243 images for testing (10%). The test 
set was stratified to ensure representative coverage of illumination scenarios, comprising 76 images under cloudy 
conditions, 63 images under sunny conditions, and 104 images under scorching conditions. This allocation guaranteed 
that model evaluation reflected realistic challenges posed by natural variability in lighting and background composition. 
Each lighting condition contributed unique visual challenges for segmentation. Cloudy conditions provided diffuse light 
that minimized shadows and highlights, clarifying leaf boundaries but reducing global contrast. Sunny conditions yielded 
relatively balanced luminance but introduced shadows from overlapping leaves and surrounding objects, often leading 
to false positives. Scorching conditions presented the most difficult scenario, as intense direct light created specular 
reflections that obscured surface textures and increased the likelihood of false negatives. Beyond illumination, additional 
variability was introduced by diverse nursery backgrounds such as concrete flooring, dry leaves, pot trays, irrigation 
pipes, and metallic racks. Leaf overlap was frequently observed, creating occlusions and complicating boundary 
detection, particularly at full resolution. By encompassing both controlled variability and realistic disturbances, the 
dataset established a robust benchmark for training and evaluation. It challenged models not only to detect leaf regions 
accurately under ideal conditions but also to generalize effectively across harsh lighting and cluttered backgrounds. 
This diversity makes the dataset a strong representation of operational conditions in industrial forestry nurseries, 
ensuring that segmentation models trained on it are applicable to real-world monitoring and management practices. 

 
2.3 Model Architecture 

This study employed three image segmentation architectures, with the Modified U-Net as the primary model. The 
other two models, SegNet and DeepLabv3+, were used solely for benchmarking so that the primary model’s 
performance could be evaluated objectively under identical training conditions. The Modified U-Net integrated a ResNet-
50 encoder pre-trained on ImageNet, L2 regularization in the decoder, and a composite Binary Cross-Entropy and Dice 
loss. SegNet employed a VGG16 encoder pre-trained on ImageNet with an unpooling decoder based on pooling indices 
to preserve spatial details [24]. DeepLabv3+ utilized an Xception backbone with Atrous Spatial Pyramid Pooling (ASPP) 
to capture multi-scale context and a decoder to refine spatial resolution  [25]. All models were trained and evaluated 
under identical configurations to ensure fair comparison. A summary of the configurations is provided in Table 1. 

 
Table 1. Configuration of the Architectures used in this Study 

Parameter Modified U-Net SegNet DeepLabv3+ 

Encoder ResNet-50 VGG16 Xception 
Pre-trained 

Weights 
Yes (ImageNet) Same as Modified U-Net Same as Modified U-Net 

Decoder 
Transposed convolution + L2 

regularization 
Unpooling based on 

pooling indices 
Transposed convolution (with 

ASPP before decoding) 
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Skip Connections Yes No Not explicit 
Input Size 1920 × 1088 pixels Same as Modified U-Net Same as Modified U-Net 
Activation ReLU; sigmoid output Same as Modified U-Net Same as Modified U-Net 

Loss Function 
Binary Cross-Entropy and 

Dice loss 
Same as Modified U-Net Same as Modified U-Net 

Optimizer 
Adam (initial lr 0.0001, 
ReduceLROnPlateau) 

Same as Modified U-Net Same as Modified U-Net 

Batch Size 2 Same as Modified U-Net Same as Modified U-Net 
Maximum Epochs 1000 (with early stopping) Same as Modified U-Net Same as Modified U-Net 

Data Augmentation 

Horizontal/vertical flips, 
random rotation, zoom, blur, 

brightness/contrast 
adjustment 

Same as Modified U-Net Same as Modified U-Net 

Model role Primary Baseline Baseline 

 
2.4 Evaluation and Metrics 

Segmentation performance was comprehensively assessed using six metrics: Dice coefficient and Intersection 
over Union (IoU) as the primary measures of overlap quality, Precision and Recall as indicators of false positive control 
and detection completeness, F1 score as a balance between Precision and Recall, and Accuracy as a global measure 
of correctly classified pixels. Together, these six metrics capture shape conformity, edge preservation, and robustness 
under challenging illumination. The Dice coefficient (Equation 1) measures the spatial overlap between predicted and 
ground truth masks and is widely used as a segmentation metric because it balances false positives and false negatives 
[26]. The IoU (Equation 2) quantifies the ratio of intersection over union between predicted and ground truth regions, 
providing a stricter penalty for mismatches [27]. Precision (Equation 3) evaluates the proportion of correctly predicted 
leaf pixels relative to all predicted positives, while Recall (Equation 4) measures the proportion of correctly detected leaf 
pixels relative to all actual leaf pixels [28]. The F1 score (Equation 5) is the harmonic mean of Precision and Recall, 
emphasizing balance between the two [29]. Finally, Accuracy (Equation 6) captures the proportion of correctly classified 
pixels (both leaf and background) over the entire image, though it is less reliable under class imbalance where 
background dominates [30], 
 

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
2 ∙ 𝑇𝑃

2 ∙ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (1) 

  

𝐼𝑜𝑈 =  
𝐴⋂𝐵

𝐴⋃𝐵
 (2) 

  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

  

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (6) 

  
where, 

TP: True Positive, correctly segmented leaf pixels 
TN: True Negative, correctly identified background pixels 
FP: False Positive, background pixels incorrectly classified as leaf 
FN: False Negative, leaf pixels missed by segmentation 

 
Dice coefficient and IoU were selected as the primary metrics because they directly evaluate segmentation 

overlap, which is the core objective of this task. Unlike Accuracy, which may be inflated in imbalanced datasets 
dominated by background pixels, Dice and IoU are more sensitive to errors at the object level [31]. Their complementary 
nature allows robust assessment: Dice emphasizes pixel-wise agreement, while IoU imposes stricter penalties for 
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disagreement. Benchmarking was conducted as a controlled comparative study of the Modified U-Net, SegNet, and 
DeepLabv3+. The test set consisted of 243 images (10% of the dataset), stratified into 76 cloudy, 63 sunny, and 104 
scorching samples. Inference was performed at the native resolution of 1920 × 1080 with a binary threshold of 0.5 and 
no post-processing. All metrics were computed on a per-image basis and summarized using the median and 
interquartile range (IQR). Error rates were further normalized to the number of leaf pixels in the ground truth to enable 
fair comparison across conditions. 

For qualitative evaluation, representative panels were generated for each lighting condition, including the original 
image, the ground truth mask, and segmentation outputs from the three models. Semi-transparent overlays were 
applied with green indicating TP, uncolored background for TN, red for FP, and blue for FN. This facilitated visual 
inspection of shape conformity, boundary preservation, and detection of small leaves, as well as error sources such as 
glare and shadow. To assess statistical significance of performance differences, the Kruskal–Wallis statistic was 
calculated using Equation 7. 
 

𝐻 =  
12

𝑁(𝑁 + 1)
 ∑

𝑅𝑗
2

𝑛𝑗

− (𝑁 + 1) (7) 

 
Where N is the total number of observations, Rj the sum of ranks for group j, and nj the sample size of group j. 

According to Tomczak and Tomczak [33], ε² values can be interpreted as negligible (<0.01), small (0.01–0.08), medium 
(0.08–0.26), and large (>0.26). 

 
3. Results and Discussion 

This section presents both quantitative and qualitative results for the three segmentation models (Modified U-
Net, SegNet, and DeepLabv3+) evaluated under cloudy, sunny, and scorching illumination using the benchmarking 
protocol described in Section 2.4. Tables are used to report numerical performance across all evaluation metrics, while 
figures provide complementary qualitative comparisons that illustrate segmentation outcomes and typical error patterns 
under varying lighting conditions. 

 
3.1 Quantitative Evaluation 

The quantitative results in Table 2 consistently demonstrate the superiority of the Modified U-Net over the 
baseline models, with performance variations across lighting conditions that align with the qualitative observations. 

 
Table 2. Segmentation Performance (median [IQR]) of Three Models under Different Lighting Conditions 

Model Metric Cloudy Sunny Scorching 

Modified U-Net Dice coefficient 0.872 [0.479] 0.841 [0.390] 0.854 [0.509] 
 IoU 0.773 [0.634] 0.725 [0.538] 0.745 [0.659] 
 Precision 0.952 [0.612] 0.841 [0.518] 0.907 [0.638] 
 Recall 0.862 [0.191] 0.890 [0.162] 0.882 [0.166] 
 F1 score 0.872 [0.479] 0.841 [0.390] 0.854 [0.509] 
 Accuracy 0.816 [0.259] 0.873 [0.247] 0.886 [0.232] 

SegNet Dice coefficient 0.538 [0.454] 0.533 [0.385] 0.476 [0.479] 
 IoU 0.368 [0.513] 0.363 [0.438] 0.312 [0.541] 
 Precision 0.924 [0.088] 0.953 [0.082] 0.947 [0.081] 
 Recall 0.379 [0.572] 0.377 [0.458] 0.318 [0.570] 
 F1 score 0.538 [0.454] 0.533 [0.385] 0.476 [0.479] 
 Accuracy 0.713 [0.369] 0.870 [0.213] 0.742 [0.284] 

DeepLabv3+ Dice coefficient 0.648 [0.448] 0.529 [0.415] 0.467 [0.429] 
 IoU 0.479 [0.458] 0.359 [0.458] 0.305 [0.460] 
 Precision 0.918 [0.089] 0.924 [0.109] 0.883 [0.079] 
 Recall 0.534 [0.513] 0.389 [0.454] 0.316 [0.532] 
 F1 score 0.648 [0.448] 0.529 [0.415] 0.467 [0.429] 
 Accuracy 0.764 [0.387] 0.880 [0.223] 0.733 [0.267] 

 
Dice coefficient serves as the primary indicator of overlap between predicted segmentations and the ground truth. 

The Modified U-Net achieved the highest Dice under cloudy conditions (0.872), decreased under sunny illumination 
(0.841), and remained strong under scorching illumination (0.854). The decline under sunny conditions reflects the 
effect of glare-induced False Positives, while the recovery under scorching conditions suggests relative resilience to 
extreme illumination variability. In contrast, SegNet (0.476–0.538) and DeepLabv3+ (0.467–0.648) consistently scored 
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lower, indicating systematic under-segmentation and limited generalization in natural environments. Intersection over 
Union (IoU) reinforces these findings. The Modified U-Net yielded its highest IoU of 0.773 under cloudy conditions, 
dropped to 0.725 under sunny illumination, and recovered to 0.745 under scorching conditions, reflecting overall 
segmentation stability. SegNet (0.312–0.368) and DeepLabv3+ (0.305–0.479) produced substantially lower IoU values, 
with wider variability, highlighting their inconsistent coverage of leaf regions. 

Precision reflects the proportion of correctly classified positive pixels. The Modified U-Net maintained high 
Precision across all conditions (0.841–0.952), peaking under cloudy illumination. The lowest Precision occurred under 
sunny conditions (0.841), consistent with glare artifacts that produced localized False Positives. Although these 
precision drops under sunny illumination reflect glare-induced FP, the overall Dice/IoU distributions remained 
statistically comparable across lighting (see Section 3.2). Interestingly, SegNet (0.924–0.953) and DeepLabv3+ (0.883–
0.924) also achieved high Precision, but this was offset by extremely poor Recall, resulting in weak overall segmentation 
performance. Recall measures the sensitivity of models in detecting all leaf regions. The Modified U-Net achieved stable 
Recall values across all lighting conditions (0.862–0.890), indicating consistent detection of the majority of leaves, even 
under adverse illumination. In contrast, SegNet (0.318–0.379) and DeepLabv3+ (0.316–0.534) consistently showed low 
Recall, underscoring their tendency toward False Negatives and explaining the under-segmentation observed in 
qualitative overlays. F1 score, the harmonic mean of Precision and Recall, highlights the balance between accuracy 
and sensitivity. The Modified U-Net achieved its highest F1 score under cloudy conditions (0.872), its lowest under 
sunny illumination (0.841), and maintained stable performance under scorching illumination (0.854). By comparison, 
SegNet (0.476–0.538) and DeepLabv3+ (0.467–0.648) fell significantly behind, reinforcing their inability to balance 
Precision and Recall. 

Accuracy, defined as the proportion of correctly classified pixels, exhibited a slightly different trend. For the 
Modified U-Net, Accuracy was relatively high across all conditions (0.816–0.886), with increases under sunny (0.873) 
and scorching illumination (0.886). This trend can be explained by the dominance of background pixels; even though 
Precision decreased due to glare-induced False Positives, large non-leaf regions were still correctly classified as 
negatives, sustaining overall Accuracy. For SegNet and DeepLabv3+, Accuracy (0.713–0.880) fluctuated more widely 
and did not align with Dice or IoU, suggesting that this metric is less informative for class-imbalanced segmentation 
tasks. The Modified U-Net demonstrated robust segmentation across all metrics, with particularly strong Dice, IoU, 
Recall, and F1 scores. The decrease in Precision observed under sunny conditions highlights a specific vulnerability to 
glare, which could potentially be mitigated through glare-aware augmentation strategies. In contrast, SegNet and 
DeepLabv3+ maintained high Precision but suffered from critically low Recall, reflecting an overly conservative 
segmentation behavior that reduced False Positives at the expense of missing large portions of leaf regions. This 
tendency limits their reliability for field applications that require comprehensive detection. Accuracy, on the other hand, 
must be interpreted with caution, as its apparent improvement under certain conditions is largely attributable to 
background dominance rather than true segmentation performance. Consequently, metrics such as Dice, IoU, and F1 
provide a more reliable and representative evaluation of segmentation quality. 

 
3.2 Statistical Analysis 

Non-parametric Kruskal–Wallis tests [32], were conducted on per-image Dice coefficient and IoU values, with 
epsilon-squared (ε²) reported as an effect size [33]. In this context, the p-value assesses the null hypothesis that median 
segmentation performance does not differ across lighting conditions (p < 0.05 indicates a statistically significant 
difference), while ε² quantifies the proportion of variance explained by the factor, interpreted as negligible (<0.01), small 
(0.01–0.08), medium (0.08–0.26), and large (>0.26). All analyses were performed on the independent test set 
comprising 243 images (76 cloudy, 63 sunny, 104 scorching). For the Modified U-Net, the Kruskal–Wallis test yielded 
H = 4.012, df = 2, p = 0.1345, with an effect size of ε² = 0.008, indicating a negligible influence of illumination on 
segmentation outcomes. Similarly, SegNet (H = 2.915, p = 0.2328, ε² = 0.004) and DeepLabv3+ (H = 1.248, p = 0.5357, 
ε² = −0.003) showed no significant differences, with effect sizes approaching zero. The detailed outcomes of the 
Kruskal–Wallis tests for all models and metrics are summarized in Table 3. 

 
Table 3. Kruskal–Wallis Tests on per-image Dice and IoU across Lighting Conditions (Cloudy, Sunny, Scorching) 

Model Metric H (df=2) p-value ε² Notes 

Modified U-Net Dice 4.012 0.1345 0.008 Not significant 
Modified U-Net IoU 4.012 0.1345 0.008 Not significant 

SegNet Dice 2.915 0.2328 0.004 Not significant 
SegNet IoU 2.915 0.2328 0.004 Not significant 

DeepLabv3+ Dice 1.248 0.5357 −0.003 Not significant 
DeepLabv3+ IoU 1.248 0.5357 −0.003 Not significant 
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Table 3 shows that none of the models exhibited statistically significant differences across lighting conditions (all 
p > 0.05). These findings demonstrate that segmentation performance, as measured by Dice and IoU, was statistically 
comparable under cloudy, sunny, and scorching conditions for all models. In practical terms, this indicates that the 
Modified U-Net maintained robust performance across natural lighting variability. While localized errors such as glare-
induced false positives in sunny scenes and shadow-related artifacts under scorching illumination reduced precision in 
certain cases, they did not alter the overall overlap distributions sufficiently to produce statistically significant changes. 
In contrast, SegNet and DeepLabv3+ yielded consistently lower Dice and IoU values regardless of illumination, 
reflecting limited adaptability rather than robustness. This reinforces the importance of illumination-aware augmentation 
strategies to further mitigate localized errors despite the overall stability of the Modified U-Net. 

 
3.3 Qualitative Evaluation 

Figure 2 presents representative qualitative overlays of segmentation results under cloudy illumination. Panel (a) 
shows the original input image, while panels (b)-(d) display segmentation outputs from different models with color-coded 
overlays. The Modified U-Net (Figure 2b) achieves the most accurate segmentation, with extensive green overlays 
covering nearly all leaf regions and only minor red or blue artifacts. In contrast, SegNet (Figure 2c) produces more red 
overlays along the background, particularly over textured non-leaf surfaces, and leaf boundaries appear less well-
defined. DeepLabv3+ (Figure 2d) shows more pronounced under-segmentation, with large blue overlays indicating 
missed leaf regions, especially in overlapping foliage and shaded areas. Error analysis confirms that under cloudy 
conditions the most common errors were small false positives along background clutter and false negatives at thin leaf 
margins. These localized artifacts did not alter the overall Dice/IoU distributions sufficiently to yield statistical 
significance, consistent with the results in Section 3.2. Quantitative error analysis under cloudy illumination further 
supports these observations. The Modified U-Net achieved an average FP rate of 0.061 and FN rate of 0.118, showing 
a strong balance between sensitivity and specificity. SegNet maintained a low FP rate of 0.043 but exhibited a very high 
FN rate of 0.621, indicating systematic under-segmentation. DeepLabv3+ presented intermediate values, with FP = 
0.071 and FN = 0.457. These findings confirm that cloudy conditions provide the most favorable imaging scenario, 
allowing the Modified U-Net to achieve the most reliable segmentation performance. 

 

  
(a) (b) 

  
(c) (d) 

Figure 2. Qualitative Comparison of Segmentation Outputs under Cloudy Conditions: (a) Original Image, (b) Modified 
U-Net Segmentation, (c) SegNet Segmentation, and (d) DeepLabv3+ Segmentation 

 

Figure 3 compares segmentation results under sunny illumination. The Modified U-Net (Figure 3b) maintains 
strong segmentation performance, with dominant green overlays representing True Positive regions. However, glare 
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on certain leaf surfaces introduced localized False Positives, where bright specular reflections were mistakenly 
classified as leaf areas. SegNet (Figure 3c) exhibits more extensive False Positives in shadowed background regions, 
and its boundary precision remains weaker compared to the Modified U-Net. DeepLabv3+ (Figure 3d) again 
demonstrates under-segmentation, with widespread blue overlays indicating False Negatives in regions affected by 
specular highlights. Error analysis indicates that sunny illumination posed the greatest qualitative challenge due to glare 
and directional shadows. These glare-induced false positives explain localized drops in precision but did not produce 
statistically significant shifts in Dice/IoU distributions. 

The quantitative FP/FN analysis confirms this trend. The Modified U-Net recorded an FP rate of 0.079 and FN 
rate of 0.162, showing that glare primarily increased false positives while recall remained relatively stable. SegNet again 
produced a very low FP rate (0.049) but extremely high FN (0.664), confirming its conservative prediction bias. 
DeepLabv3+ demonstrated FP = 0.087 and FN = 0.552, highlighting its difficulty in capturing leaf regions affected by 
strong reflections. These values align with the qualitative finding that sunny illumination is the most error-prone scenario. 

 

  
(a) (b) 

  
(c) (d) 

Figure 3. Qualitative Comparison of Segmentation Outputs under Sunny Conditions: (a) Original Image, (b) Modified 
U-Net Segmentation, (c) SegNet Segmentation, and (d) DeepLabv3+ Segmentation 

 
Figure 4 illustrates segmentation performance under scorching illumination. The Modified U-Net (Figure 4b) 

continues to outperform the baseline models, preserving the majority of leaf regions with extensive green overlays 
indicating True Positive coverage, although shadow-dense areas introduced moderate False Positives. SegNet (Figure 
4c) generates a large number of False Positives in dark background regions, particularly along high-contrast edges 
between leaves and soil. DeepLabv3+ (Figure 4d) again exhibits substantial False Negatives, with extensive blue 
overlays highlighting missed foliage. Error analysis under scorching conditions reveals that intense direct sunlight 
introduced both shadow-induced false positives and glare-induced false negatives. These shadow-related errors 
contributed to precision fluctuations but were insufficient to shift Dice/IoU distributions to statistical significance. 

Quantitative results provide further evidence of this pattern. The Modified U-Net showed FP = 0.072 and FN = 
0.177, slightly higher FN than under cloudy or sunny conditions but still balanced overall. SegNet recorded FP = 0.051 
with FN = 0.642, again reflecting massive under-segmentation. DeepLabv3+ produced FP = 0.091 and FN = 0.489, 
demonstrating persistent under-detection of leaf regions under intense illumination. These values confirm that scorching 
conditions primarily elevate false negatives, particularly in SegNet and DeepLabv3+, while the Modified U-Net maintains 
comparatively stable performance. 
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(a) (b) 

  
(c) (d) 

Figure 4. Qualitative Comparison of Segmentation Ooutputs under Scorching Conditions: (a) Original Image, (b) 
Modified U-Net Segmentation, (c) SegNet Segmentation, and (d) DeepLabv3+ Segmentation 

 
3.4 State-of-the-Art Comparison 

To contextualize the above quantitative and qualitative findings, we compare our overlap scores with recent leaf-
segmentation studies. In field orchard imagery, an Eff-UNet–based apple-leaf pipeline reported an average test IoU of 
0.72 [34], indicating feasible but still modest pixel-wise overlap under real-world variability. On a related leaf-image task, 
an improved UNet (RS-UNet) achieved mIoU = 0.798 [35]. In comparison, our Modified U-Net attains IoU = 0.773 under 
cloudy scenes, placing it above the orchard baseline and approaching the improved UNet result obtained on a different 
dataset, while being validated under natural, variable illumination (cloudy/sunny/scorching). These cross-study 
contrasts reinforce that the proposed architecture delivers competitive overlap quality for leaf segmentation in outdoor 
nursery conditions, acknowledging that absolute comparability is limited by dataset differences and the use of IoU 
versus mIoU. 
 
3.5 Discussion and Implications 

The Modified U-Net consistently demonstrated accurate and stable segmentation under natural nursery 
conditions, outperforming SegNet and DeepLabv3+ across all lighting scenarios. Overall robustness was confirmed by 
Kruskal–Wallis tests on per-image Dice and IoU, which detected no significant differences across cloudy, sunny, and 
scorching conditions (all p > 0.05). This indicates that the model maintained statistically comparable performance 
distributions despite variations in illumination. Nevertheless, qualitative error analysis highlighted systematic patterns 
that explain fluctuations in certain metrics. Sunny scenes remained the most challenging due to glare-induced false 
positives, which reduced precision while recall stayed high. Scorching conditions introduced shadow-related false 
positives, but their influence was less pronounced than glare, resulting in localized errors without altering global Dice or 
IoU distributions. In contrast, cloudy conditions provided diffuse illumination that minimized both glare and shadows, 
enabling more consistent segmentation with fewer artifacts. These observations suggest that while the Modified U-Net 
preserved stable performance across lighting conditions in statistical terms, illumination still shaped error modes that 
have practical relevance. For operational deployment, cloudy acquisition remains preferable whenever possible, 
whereas glare- and shadow-aware augmentation strategies should be incorporated into training pipelines to mitigate 
localized failures in sunny and scorching scenarios. Such adaptations would further enhance precision without 
compromising the robustness already demonstrated in global metrics. 
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4. Conclusion 
This study evaluated the performance of Modified U-Net, SegNet, and DeepLabv3+ for leaf segmentation of 

Eucalyptus pellita seedlings under three natural illumination conditions (cloudy, sunny, and scorching) in open nursery 
environments. The Modified U-Net, incorporating a ResNet-50 encoder, L2 regularization, and a composite Binary 
Cross-Entropy and Dice loss, consistently outperformed the baseline models across all scenarios. On the independent 
test set (243 images; 76 cloudy, 63 sunny, 104 scorching), Kruskal–Wallis tests on per-image Dice and IoU found no 
significant differences across lighting conditions (p > 0.05), indicating stable segmentation performance under natural 
illumination variability. Qualitative overlays and FP/FN analyses nonetheless revealed localized challenges: glare-
induced false positives in sunny scenes and shadow-related artifacts under scorching light. These error modes explain 
precision fluctuations while leaving overall Dice and IoU distributions statistically comparable. Taken together, the 
findings demonstrate that the Modified U-Net delivers robust segmentation in realistic nursery conditions, with consistent 
performance across diverse illumination scenarios. The main contributions of this study are threefold: (i) the integration 
of ResNet-50 encoder, L2 regularization, and BCE+Dice loss as a novel architectural modification for outdoor 
segmentation; (ii) empirical validation on a large, annotated dataset with high inter-annotator agreement (κ = 0.9628); 
and (iii) demonstration of stable performance across challenging natural lighting. For practical deployment, glare- and 
shadow-aware augmentation strategies and computational optimizations (e.g., quantization, lightweight encoders) are 
recommended to mitigate localized errors and enable near real-time inference on edge devices. 
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