
Syaikhuddin, M., Anam, C., Rinaldi, A., & Conoras, M. (2018). Conventional Software Testing 
Using White Box Method. Kinetik : Game Technology, Information System, Computer Network, 
Computing, Electronics, and Control, 3(1). http://dx.doi.org/10.22219/kinetik.v3i1.231 
Paper submitted on June 14, 2017; Revision on August 15, 2017; Received September 06, 2017 

KINETIK, Vol. 3, No. 1, February 2018, Pp. 65-72 
  ISSN : 2503-2259 
  E-ISSN : 2503-2267 

 

    

   

65 

Conventional Software Testing Using White Box Method  
 
 

Muhammad Miftakhul Syaikhuddin*1, Choirul Anam2, Ade Rizki Rinaldi3, M El Bahar 
Conoras4 

1,2,3,4Universitas AMIKOM Yogyakarta 
syaimif.dev@gmail.com*1, ch.a6.rowi@gmail.com2, belajarjava2gether@gmail.com3, 

elconoras@gmail.com4 
 
 

Abstract 
Software development process highly relates to analysis, design, coding, testing and 

implementation processes. Testing process becomes imperative process to maintain a quality 
product running well. Testing process can be conducted both for structural and object-oriented 
software. However, the method utilized for structural and object-oriented software is significantly 
different. Testing structural program can utilize White Box, Black Box, or Gray testing methods. 
This study White Box Testing has been employed to test a simple application. The testing process 
using White Box Testing employs some testing techniques based on path testing consisting of 
some processes, namely testing independent path, developing flow graph, calculating cyclomatic 
complexity, and developing graph matrices. Hence, the testing process employing White Box 
method with basis path testing technique can be executed. 

  
Keywords: White Box Testing, Basis Path Testing, Flow Graph, Cyclomatic Matrices, Graph 
Matric 

 
 

1. Introduction 
Software engineering covers two functions, software as a machine and software as a 

product. There are some required stages in the process of Systems Development Life Cycle 
(SDLC), consisting of design, system analysis, coding, testing and implementation. This overall 
process in SDLC has important and interconnected processes from one to another, started from 
very well planning stage, system analysis, coding, system testing by ensuring the conformity 
between the analysis and coding phase to have a properly developed and used software. 

In the testing proses utilizing SDLC, there have been some existing methods being able to 
be employed in the testing process, both for testing structural and object-oriented software. Some 
possible methods being capable to use in application testing having conventional characteristic 
are White Box Testing, Black Box Testing and Gray Testing [1]. White Box Testing is a system 
analysis testing to identify the differences between system requirements with the developed or 
existing system [1]. 

The principle of an application test to effectively and efficiently run includes: 1) Testing must 
be based on user requirements; 2) The available testing time and resource are limited; 3) 
Resources need to be effectively used for testing; 4) Testing should begin in small and 
progressive terms in far greater terms; 5) Testing should be implemented by a different team of 
examiners or an external team; 6) All testing should be based on the customer needs; 7) The best 
available person should be assigned to do software testing; 8) The test reports including test 
cases and test reports for a summary of application test results are required; 9) The software 
testing process should be executed as early as possible in the application development process 
and should focus on defining the object; 10) The test planning should be completed first; and 11) 
The initial test plan must and must be updated on time [2]. 

The quality of the test itself should not be underestimated, there are several criteria in 
implementing good quality testing, namely having scope of testing for all possible scenarios to 
operate the software, developing the scope of the paths being as much as possible from the 
program structure; and being not too simple and complicated [3]. 

The important steps or method of the testing process using White Box Testing method 
cover control flow testing, branch testing, base path testing, data flow testing, and loop testing [4]. 
Meanwhile, according to Pressman [5], there are several testing techniques in White Box Testing 

http://dx.doi.org/10.22219/kinetik.v3i1.231
mailto:syaimif.dev@gmail.com
mailto:ch.a6.rowi@gmail.com2
mailto:belajarjava2gether@gmail.com
mailto:elconoras@gmail.com


ISSN: 2503-2259; E-ISSN: 2503-2267 

KINETIK Vol. 3, No. 1, February 2018: 65-72 

 

 

                    

 

66 

method such as base path testing and control structure testing having some testing methods such 
as condition testing, data flow testing, and loop testing. 

 
2. Research Method 

The research method applied in this research was implemented by doing the process of 
testing a conventional application or a structural based application used to convert numbers into 
a sentence. This test is completed by taking sample source code from the application; afterwards, 
the acquisition process was carried out and determined White Box Testing method as the most 
suitable technique used in the testing process. Hence, the sample source code will be used to 
describe the testing process using existing techniques in the White Box Testing method. 

White Box Testing method can utilize some techniques in the source code program testing 
as follows: 
1. Loop testing 

Loop testing is one of testing types from White Box Testing having characteristic to focus 
intesting the validation of iteration construction in a source code [4]. 

2. Branch Testing 
Brach Testing is also called Statement Coverage and Branch Coverage, a method used to 
validate every code line executed at least once [6]. The branch in programming language such 
as ‘IF Statement’ has two values namely true and false. 

3. Basis Path Testing 
Basis Path Testing explained by Gupta [7] referred to McCabe ensures all independent code 
paths have been tested. An independent path passing every code line introduces at least one 
new set, a new statement or new condition. 

White Box Testing has considered as a seldom utilized testing method, but it will be more 
preferable to be employed to test in specific condition. This condition needs a tester to review a 
code program having high complexity level [8]. These techniques are a variation of White Box 
Testing technique. Figure 1 presents more details on this connection. 
 

Figure 1. Representation of Technique Variation in White Box Method 
 

The utilized research flow as described in the first paragraph of the research methodology 
chapter covers some processes initiated by collecting related literatures to have better 
understanding to the description of the technique. The following phase is applying the source 
code sample into the techniques used to clarify the testing process, used as a proofing step in 
the test technique. Furthermore, it has some testing methods that can be used to obtain more 
accurate proof. Figure 2 shows more details on the research flow. 



KINETIK                  ISSN: 2503-2259; E-ISSN: 2503-2267 

  

Conventional Software Testing Using White Box Method  
Muhammad Miftakhlul Syaikhuddin, Choirul Anam, Ade Rizki Rinaldi, M. El Bahar Conoras 

67 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Research Flow 
 

The testing technique used in testing by White Box Testing method is basis path testing. 
Basis path testing utilizes several steps to complete its testing process, flow graph notation, 
cyclomatic complexity, deriving test case and graph matrices [4].  
 
3. Research Results and Discussion 

The discussion on this research covers the utilization of White Box Testing and basis path 
testing. Basis path testing is a testing technique in White Box Testing method initially proposed 
by McCabe and allowing a test case designer to measure logic complexity from procedural 
design. In addition, this measurement is used as an approach to decipher the execution of a basis 
path set (a basis set is a set of all implementation procedures) [4]. However, there some other 
opinions related to basis path testing as a technique utilized to test a source code program based 
on flow control. This approach uses control bot flow to alter code into model generating 
independent paths [1]. Basis path testing technique employs some approaches, flow graph 
notation, cyclomatic complexity, graph matrices, and deriving test case. 
 
3.1 Flow Graph Notation 

Flow Graph Notation is structural testing strategy using a path control program as a path 
control model, having a simple approach with a complex path. Control Flow Testing is applicable 
to almost all software and the most effective testing to most software; moreover, this testing 
becomes the most basic technique in White Box Testing, and its application is mostly designated 
to smaller application programs or segments of bigger application program [6]. 

However, there are some existing opinions stating simple notation used to represent control 
flow is also by flow control. Flow graph is a logical control flow utilized to illustrate control program 
structure. It is important to notice that every circle in the flow graph is called by flow graph node; 
the arrow is called by edge or link (representing control flow); and the area confined by a node 
and edge is called by a region. The following flow graph represents an individual construction 
combined to construct a flow graph for a specific procedure [4]. 
 
3.2 Cyclomatic Complexity 

 Cyclomatic complexity is software matric providing the fourth quantitative measurement 
from logical complexity. If used in basis path testing, this technique defines the number of 
independent paths (any passing paths in a program having at least a new set or a set of 
processing statement or a new condition) in the basis program series providing high value for a 
number of required tests to ensure overall coverage of program statements [4]. 

Literature Study 

Program Sample 

White Box Testing 

Testing Technique Application 

Proofing 

Conclusion 



ISSN: 2503-2259; E-ISSN: 2503-2267 

KINETIK Vol. 3, No. 1, February 2018: 65-72 

 

 

                    

 

68 

In addition, other opinions state cyclomatic complexity is the preferably used matric 
complexity in software engineering, defined by Thomas McCabe in 1976 based on control path 
structure of a program. Hence, it eases in understanding, calculating and providing useful outputs 
[2]. 
There are some steps in calculating cyclomatic complexity in a program, namely: 
1. Cyclomatic Complexity: V(G), the flow graph G defined as: 

V(G) = P + 1 
P represents the number of predicate nodes. 

2. Calculating the number of regions in a flow graph according to cyclomatic complexity. 
3. Cyclomatic Complexity: V(G), the flow graph G defined as: 

V(G) = E-N+2 
N represents the number of nodes (points in a flow graph), and E represents the number of 
edges. 

Sub chapter 3.5 will discuss these formulations.  
 

 

Figure 3. Illustration of Flow Graph Types 
 

3.3 Deriving Test Cases 
Obtaining a test case of a procedure becomes the main purpose from basis path testing. 

Some required phases in basis path testing are as follows [4]: 
1. Developing a suitable flow graph according to proposed design or source code. 
2. Calculating the cyclomatic complexity from the flow graph using from one the given formulas. 

Sequence 

While 

Case 

Until

 
 Sequence 

If 



KINETIK                  ISSN: 2503-2259; E-ISSN: 2503-2267 

  

Conventional Software Testing Using White Box Method  
Muhammad Miftakhlul Syaikhuddin, Choirul Anam, Ade Rizki Rinaldi, M. El Bahar Conoras 

69 

3. Determining one linear path in the independent paths. 
4. Preparing test case used to execute every path in the basis set. 
5. Implementing testing process at least once for every testing path. 
 
3.4 Graph Matrices 

Graph Matrices are two-dimensional matrices being very helpful in determining basis set, 
having similar number of columns and paths with the existing nodes in a flow graph. In addition, 
letters are usually assigned in order to differentiate each node. Each edge is completed with some 
links (“0” value = no connection and “1” value = connection) [4]. 

This research implemented testing by converting the flow graph to square matrix employing 
one line and column for every graph. Therefore, tracking all links in the flow graph having been 
passed at least once could be implemented [2]. 
 
3.5 Example of Cyclomatic Complexity and Graph Matric 

To strengthen the previous review, the research performed a trial using provided source 
code in the form of simple application module being capable to convert numbers to sentences or 
words. Furthermore, this trial utilizing basis path testing technique with cyclomatic complexity and 
graph matrices. 
  
3.5.1 Cyclomatic Complexity Testing 

The initial stage was reading and understanding the source code in order to construct a 
flow graph as this trial’s most important process, leading to the further processes. 
 
 

 

Figure 4. Source Code of the Converter Application 
 

From the source code presented in Figure 4, a flow graph culd be generated based on 
statements in the source code. As mentioned in Figure 5, there are 10 statements according to 
the given numbering. The flow graph from the previous flow graph is presented in the following 
figure. 

From the flow graph, the process to determine regions in cyclomatic complexity could be 
conducted by searching the existing independent path in the flow graph. Those paths are as 
follows: 
Path 1: 1-10 
Path 2: 1-9-1-10 



ISSN: 2503-2259; E-ISSN: 2503-2267 

KINETIK Vol. 3, No. 1, February 2018: 65-72 

 

 

                    

 

70 

Path 3: 1-2-3-4-9-1-10 
Path 4: 1-2-3-5-9-1-10 
Path 5: 1-2-3-6-9-1-10 
Path 6: 1-2-3-7-9-1-10 
Path 7: 1-2-3-8-9-1-10 
Calculating cyclomatic complexity from the flow graph, subsequently, could be performed as: 

 
R, Region = 7 
Number of node = 10 
Number of edge = 15 
Number of predicated node = 6 
 
This obtained data would be applied to the related formula to obtain: 
Cyclomatic Complexity  
V(G)  = R = 7 
or 
V(G)  = Predicate node +1  
 = 6 + 1  
 = 7 
or 
V(G)  = Edge – Node + 2 
 = 15 – 10 + 2 
 = 7 
 Therefore, the cyclomatic testing equals to 7. 
 

 

Figure 5. Example of Source Code Flow Graph 
  
3.5.2 Graph Matric 

After calculating using cyclomatic complexity, there is an alternative method by using graph 
matric from the existing flow graph. This scenario is presented in Figure 6. 



KINETIK                  ISSN: 2503-2259; E-ISSN: 2503-2267 

  

Conventional Software Testing Using White Box Method  
Muhammad Miftakhlul Syaikhuddin, Choirul Anam, Ade Rizki Rinaldi, M. El Bahar Conoras 

71 

 

Figure 6. Graph Matric 
 

From the given graph matric, a graph matric Table 1 and a connection matric Table 2 can 
be developed. 

 
Table 1. Graph Matric 

Node 1 2 3 4 5 6 7 8 9 10 

1  a       c O 
2   B        
3    D F h j l   
4         e  
5         g  
6         i  
7         k  
8         m  
9 n          

10           

 
Moreover, the table for the connection matric is as follows: 
 

Table 2. Connection Matric 

Node 1 2 3 4 5 6 7 8 9 10 Connections 

1  1       1 1 =3-1=2 
2   1        =1-1 
3    1 1 1 1 1   =5-1=4 
4         1  =1-1 
5         1  =1-1 
6         1  =1-1 
7         1  =1-1 
8         1  =1-1 
9 1          =1-1 

10           =0 

 
Thus, the cyclomatic complexity is calculated as 2+4=6. 
 



ISSN: 2503-2259; E-ISSN: 2503-2267 

KINETIK Vol. 3, No. 1, February 2018: 65-72 

 

 

                    

 

72 

4. Conclusion 
The whole completed testing process presents some difference results on each chosen 

technique of the testing process. The cyclomatic testing result shows 7; on the other hand, the 
graph matric testing indicates 6. It may be caused by an error in the flow graph construction or in 
the source code development. Consequently, it will be necessary to find an experienced tester to 
conduct the testing process using White Box Testing method due to its complexity. 

Compared to Black Box Testing by conducting testing only on the existing system function, 
White Box testing is used to test the procedure in its source code program. Additionally, there 
some benefits in using White Box Testing exemplified by the availability to execute all logical 
decisions and all independent paths in a model [9]. An automatic testing process to minimize the 
software’s production cost and improve the software’s reliability can also be executed [10]. 
 
References 
[1] Rathod SS. "A Scenario of Different Types of Testing Techniques in Software Engineering," 

International Journal of Advanced Research Computer Science and Software Engineering, 
Pp. 133–44, 2014. 

[2] Dhingra N, and Mayank, "Contingent Study of Black Box and White Box Testing 
Techniques," International Journal of  Current Engineering Technology, Pp. 3346–52, 2014. 

[3] Rouf A., "Software Testing using White Box and Black Box Testing," Journal of Information 
Technology HIMSYA-Tech, Pp. 1–7, 2012. 

[4] Khan ME., "Different Approaches to White Box Testing Technique for Finding Errors," 
International Journal of Software Engineering and its Application," Pp. 1–14, 2011. 

[5] Pressman RS., "Software Engineering: A Practitioner’s Approach," 7th Ed, 2009. 
[6] Kumar M, Singh SK, and Dwivedi RK., "A Comparative Study of Black Box Testing and White 

Box Testing Techniques," International Journal of Advanced Resesearch in Computer 
Science and Management Studies. Pp. 32–44, 2015. 

[7] Gupta N., "Different Approaches to White Box Testing to Find Bug," International Journal of 
Advanced Research in Computer Sciency and Technology (IJARCST 2014), ;2(3):46–9, 
2014 

[8] Dennis A, Wixom BH, and Roth RM., "System Analysis and Design," 5th Edition. Hoboken: 
John Wiley & Sons, Inc., Pp. 594, 2012. 

[9] Jovanovic I., "Software Testing Methods and Techniques," IPSI BgD Transaction on Internet 
Research," [Internet], Pp. 30–41, 2009. Available from: 
http://www.internetjournals.net/journals/tir/2009/January/Full Journal.pdf#page=31 

[10] Shao D, and Perry DE., "Whispec: White Box Testing of Libraries using Declarative 
Specifications," Framework, Pp. 11–20, 2007. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


