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Indonesia faces a critical shortage of radiologists, with only 1.2 radiologists per 
100,000 individuals. This shortage leads to delays in diagnosing thoracic 
abnormalities such as pneumothorax, cardiomegaly, nodule/mass, 
consolidation, and infiltration. Chest X-ray (CXR) interpretation remains 
challenging due to overlapping radiological features, necessitating AI-assisted 
solutions. This study evaluates three lightweight deep learning models—
MobileNetV2, ShuffleNetV2, and EfficientNetB0—for automated thoracic 
abnormality detection using the ChestX-ray8 dataset. We assessed model 
performance using accuracy, precision, recall, F1-score, and AUC-ROC, 
selecting the best model based on the highest per-fold F1-score. 
EfficientNetB0 emerged as the top-performing model, achieving a macro-
average F1-score of 0.556 and AUC-ROC of 0.765, outperforming 
MobileNetV2 (0.494, 0.719) and ShuffleNetV2 (0.481, 0.713). Grad-CAM 
analysis revealed strong localization for pneumothorax and consolidation but 
misclassifications in cardiomegaly and nodule/mass detection due to poor 
feature differentiation. The findings highlight EfficientNetB0’s potential as an 
AI-assisted diagnostic tool for low-resource settings while also underscoring 
the need for segmentation-based pretraining and multi-scale feature extraction 
to enhance detection accuracy. Future work should focus on optimizing 
sensitivity to subtle abnormalities and ensuring clinical trust through improved 
interpretability techniques. 

 
1. Introduction 

Indonesia faces significant public health challenges, with a high prevalence of both communicable and non-
communicable diseases, notably tuberculosis (TB) and pneumonia. According to the Global TB Report 2023, Indonesia 
ranks second globally in TB cases, with an estimated 1,060,000 cases and 134,000 deaths annually—equating to about 
15 deaths every hour [1]. Pneumonia remains the leading cause of infectious death among children under five in 
Indonesia, affecting approximately half a million children annually and resulting in about 10,000 deaths [2]. These 
diseases, along with chronic obstructive pulmonary disease (COPD), lung cancer, heart failure, and interstitial lung 
diseases, contribute significantly to the high morbidity and mortality rates [3][4][5][6]. Prompt and accurate diagnosis is 
crucial for effective treatment and control; yet, it remains a challenge in Indonesia due to resource limitations and a 
shortage of radiologists. The country has only 2,161 registered radiologists, which equates to approximately 1.2 
radiologists per 100,000 individuals, and faces a shortage of 31,481 specialized doctors, including radiologists, across 
its healthcare system [7][8]. This shortage, combined with the uneven distribution of healthcare professionals across 
provinces, particularly in rural areas, overwhelms the healthcare system, causing delays in diagnosis and treatment and 
exacerbating the health burden [7]. 

Chest X-ray (CXR) is a fundamental imaging tool for detecting a variety of thoracic conditions, including 
tuberculosis (TB), pneumonia, and other critical diseases [9][10][11]. As a non-invasive, cost-effective, and widely 
available modality, CXR plays a crucial role in diagnosing respiratory diseases. However, interpreting CXR images 
requires substantial expertise, as abnormalities may present subtly or overlap, complicating accurate diagnosis—
particularly in resource-limited settings [12][13]. 

Tuberculosis (TB) often presents on chest imaging as nodules, masses, and consolidation, aiding diagnosis; 
nodules or masses may indicate active infection, granulomas, or lung cancer, with tuberculomas occurring in about 5% 
of post-primary TB cases, sometimes forming cavities [14][15]. Pneumonia, especially in children, manifests as 
consolidation from alveolar exudate and infiltration, seen as patchy or diffuse opacities and often linked to viral infections 
like influenza [16][17][18]. COPD typically shows pneumothorax, causing lung collapse and respiratory distress, and 
infiltration, indicating inflammatory airway changes and lung damage [19][20][21][22][23]. Lung cancer appears as 
nodules or masses on imaging, with malignancy suspected in lesions over 3 cm or those with irregular growth patterns 
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[24][25]. Heart failure impacts both cardiovascular and pulmonary systems, leading to pulmonary congestion and 
cardiomegaly, identified on chest X-rays by a cardiothoracic ratio above 50%, signaling left ventricular dysfunction or 
pericardial effusion [26][27][28][29][30][31]. These abnormalities—pneumothorax, cardiomegaly, nodules/masses, 
consolidation, and infiltration—are key indicators of severe thoracic diseases, but accurate interpretation requires expert 
radiological skills, posing a challenge in resource-limited settings. 

Deep learning offers a promising solution to challenges in medical imaging, particularly in detecting these specific 
abnormalities. Instead of diagnosing diseases directly, deep learning models provide a more detailed analysis by 
identifying signs indicative of various conditions. For example, a nodule on CXR might suggest different diagnoses, 
such as TB or lung cancer, depending on other clinical factors. By quantifying these abnormalities, deep learning models 
can assist radiologists in making faster and more accurate assessments, which is invaluable in resource-limited settings. 

The use of Artificial Intelligence (AI) tools for pre-screening and highlighting potential abnormalities can 
significantly reduce the time required for radiologists to produce diagnostic reports [32][33][34][35][36], allowing them 
to focus more on areas requiring attention. This is especially beneficial in high-volume environments, such as large 
hospitals or during disease outbreaks, where rapid turnaround is crucial. However, emerging gaps include limitations 
on available hardware, particularly in areas with limited resources or in rural health facilities [37]. Many hospitals and 
clinics in Indonesia lack access to advanced computing devices, such as servers or computers with high GPU 
capabilities [38], due to the high costs involved in providing such technology [39]. Thus, there is an urgent need to 
develop deep learning models that are not only accurate but also can run efficiently on devices with low computing 
power. 

Mobile models, such as MobileNet, ShuffleNet, and EfficientNet, provide efficient solutions for medical imaging 
challenges by optimizing computational speed without sacrificing accuracy [40][41][42]. These models are highly 
efficient and enable deployment on mobile devices and low-power systems, making them ideal for healthcare facilities 
with limited technology. Their accessibility benefits regions with poor infrastructure, as smartphones or tablets can 
facilitate fast and accurate diagnoses in rural or developing areas [37]. Additionally, their speed allows radiologists to 
produce diagnostic reports quickly, which is vital during high patient volumes or health emergencies [43]. Economically, 
mobile models reduce costs by minimizing hardware needs, enabling hospitals to implement AI without expensive 
infrastructure investments [40]. Their scalability allows integration into various healthcare settings, from clinics to 
telemedicine platforms, ensuring wider deployment and remote usability [44]. MobileNet, with depthwise separable 
convolutions, reduces computational load, making it efficient for mobile use [40]. ShuffleNet employs pointwise group 
convolutions and channel shuffling to maintain accuracy while lowering computational costs [42]. EfficientNet uses multi-
scale compound scaling to balance network dimensions, achieving efficient performance with fewer parameters [41]. 
Together, these models offer fast, scalable, and cost-effective diagnostic solutions suitable for resource-limited 
healthcare environments. 

In addition to their architectural efficiency, these models have shown strong empirical performance in chest X-
ray classification tasks. MobileNetV2, in particular, has demonstrated exceptional accuracy and speed, making it highly 
suitable for medical image analysis. For instance, MobileNetV2 achieved 98.65% accuracy and 98.15% recall in 
pneumonia and COVID-19 detection [45], and was ranked highest among 11 Convolutional Neural Networks (CNNs) 
for both accuracy and speed [46]. [47] Velu (2023) further fine-tuned MobileNetV2 for accurate and rapid COVID-19 
detection from chest X-rays, achieving 92.5% training accuracy and 93.75% validation accuracy, outperforming both 
scratch-trained CNNs (81.4%) and fine-tuned ResNet50 (80.6%). Additionally, a systematic review by Iqbal et al. (2024) 
reported a 94% accuracy rate of MobileNetV2 on the CXR-14 dataset [48], while Gu and Lee (2024) demonstrated the 
model's effectiveness with transfer learning, achieving 90.9% accuracy in pneumonia detection [49]. 

ShuffleNetV2, another lightweight and efficient model, has also shown promising results. Gu and Lee (2024) 
reported that ShuffleNetV2 achieved 91.2% accuracy using transfer learning for pneumonia detection, highlighting its 
potential for fast and accurate disease classification [49]. An et al. (2022) emphasized its low parameter count and 
model weight, making it ideal for embedded applications, which are critical in resource-limited healthcare settings [50]. 

EfficientNetB0 has also demonstrated outstanding performance, balancing accuracy and computational 
efficiency. It reached 99% classification accuracy, outperforming deeper models like ResNet-50 and VGG-19 in both 
efficiency and accuracy [51]. Furthermore, Kansal et al. (2024) reported that EfficientNetB0 outperformed ResNet-50 
with a testing accuracy of 99.62% on the Kaggle dataset and 99.78% on the Mendeley dataset for multi-centric lung 
abnormality classification [52]. Iqbal et al. (2024) corroborated these findings, noting EfficientNetB0's 98% accuracy in 
COVID-19 detection [48]. Additionally, An et al. (2024) demonstrated that combining EfficientNetB0 with DenseNet121, 
enhanced by attention mechanisms, achieved a high diagnostic accuracy of 95.19%, with enhanced precision (98.38%) 
and F1 score (96.06%) [53]. 

These findings from prior research validate the selection of MobileNetV2, ShuffleNetV2, and EfficientNetB0 for 
this study and reinforce their suitability for real-world clinical applications in underserved regions. Their balance of 
accuracy, computational efficiency, and adaptability through fine-tuning and transfer learning makes them prime 
candidates for diagnostic tasks where both speed and accuracy are crucial. All the significant literature discussed is 
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summarized in Table 1, providing a concise overview of the models' performance and key findings across various 
studies. 

To enhance the interpretability of these models in medical applications, techniques such as Gradient-weighted 
Class Activation Mapping (Grad-CAM) have been employed [32][54][55]. Grad-CAM provides a mechanism to visualize 
which areas of the input image contribute most to the model’s prediction, allowing clinicians to understand and trust the 
diagnostic decisions made by the model. In the context of thoracic abnormality detection, Grad-CAM can help highlight 
areas of the lungs affected by disease, providing a visual tool for localizing pathological areas in CXR. This capability 
is invaluable in clinical environments where affordability and transparency of AI models are essential for gaining 
acceptance and trust from healthcare professionals. 

Evaluating deep learning models in medical imaging often involves rigorous testing procedures to ensure 
robustness and generalization. Techniques such as K-Fold Cross Validation are used to split data into several subsets, 
or folds, and validate the model across these folds to minimize bias and variance [56][57]. In addition, performance 
metrics such as accuracy, precision, recall, and F1 score are used to holistically evaluate model performance, covering 
aspects of accuracy and consistency in predictions [58]. Moreover, performance metrics such as the Area Under the 
Receiver Operating Characteristic Curve (AUC-ROC) are critical for evaluating the diagnostic accuracy of the model. 
The AUC-ROC curve measures the balance between the true positive rate and the false positive rate, providing deep 
insight into the model’s ability to distinguish between different classes—in this case, the presence or absence of thoracic 
abnormalities [59]. 

Integrating lightweight deep learning models with advanced evaluation and visualization techniques aims to 
enhance the efficiency and accuracy of abnormality detection, especially in environments where traditional radiological 
resources are limited. By leveraging models such as MobileNet, EfficientNet, and ShuffleNet, this research seeks to 
develop powerful and mobile-friendly diagnostic tools that can operate effectively on devices with limited resources, 
thereby improving healthcare services and outcomes in underserved areas. This approach not only addresses the 
urgent need for scalable diagnostic solutions but also contributes to the broader goal of making advanced medical 
imaging technology more accessible and practical for widespread use in clinical practice. To achieve this objective, the 
study addresses the following research question: How can the implementation of lightweight and interpretable deep 
learning models (using Grad-CAM) enhance accuracy and efficiency in detecting thoracic abnormalities in chest X-ray 
(CXR) images within resource-constrained settings in Indonesia? 

 
Table 1.Summary of the Significant Literature Studies 

Focus Author Objective Relevance 

MobileNetV2, 
ShuffleNetV2 

An et al. 
(2022) 

[50] 

Develop a lightweight deep neural 
network (E-TBNet) for automatic 
detection of tuberculosis using X-
ray DR imaging, optimized for 
devices with lower hardware levels. 

MobileNetV2 achieved the highest 
accuracy (90%) among lightweight 
models, while ShuffleNetV2 
excelled in size and efficiency. E-
TBNet balanced accuracy (85%) 
and efficiency. 

MobileNetV2 
Velu 

(2023) 
[47] 

Develop a fine-tuned MobileNetV2 
model for accurate and rapid 
COVID-19 detection from chest X-
rays. 

Fine-tuned MobileNetV2 achieved 
superior performance (92.5% 
training accuracy, 93.75% validation 
accuracy), outperforming both 
scratch-trained CNN (81.4%) and 
fine-tuned ResNet50 (80.6%). 

MobileNetV2 
Akter et 

al. (2021) 
[46] 

Develop a deep learning model for 
detecting COVID-19 from chest X-
rays using CNN architectures. 

Among the evaluated models 
(MobileNetV2, VGG16, ResNet50), 
MobileNetV2 achieved the highest 
accuracy (98%). 

MobileNetV2 

Kolonne 
et al. 

(2021) 
[45] 

Develop a MobileNetV2-based 
model for classifying normal, 
pneumonia, and COVID-19 
conditions from chest X-rays. 

MobileNetV2 without transfer 
learning achieved the highest 
accuracy (98.65%) compared to the 
transfer learning approach (97.89%) 

MobilenetV2, 
EfficientNetB0 

Iqbal et 
al. (2024) 

[48] 

Systematic review of AI methods for 
lung disease detection using chest 
X-rays. 

MobileNetV2 achieved 94% 
accuracy on the CXR-14 dataset, 
while EfficientNetB0 achieved 98% 
accuracy in COVID-19 detection. 

Transfer 
Learning 

Utilization, 

Gu and 
Lee 

Utilize deep transfer learning from 
general-purpose datasets (like 

Lightweight models ShuffleNetV2 
and MobileNetV2 showed 
significant performance 
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MobileNetV2, 
ShuffleNetV2 

(2024) 
[49] 

ImageNet) to classify pneumonia in 
X-rays. 

improvements with transfer 
learning, achieving accuracies of 
91.2% and 90.9%, respectively. 

GradCAM Use 
Gakhar et 
al. (2022) 

[60] 

Develop a two-stage pipeline for 
thoracic abnormality detection and 
disease classification using fusion 
DCNNs. 

The proposed fusion-based 
approach (ThoraciNet) achieved an 
AUC of 0.99 for CXR triaging and 
0.79 for disease classification, 
outperforming single-stream 
DCNNs. GradCAM visualization 
was used to enhance 
interpretability. 

EfficientNetB0 
Kansal et 
al. (2024) 

[52] 

Compare the performance of 
EfficientNetB0 and ResNet-50 for 
multi-centric lung abnormality 
classification. 

EfficientNetB0 outperformed 
ResNet-50 with a testing accuracy 
of 99.62% on the Kaggle dataset 
and 99.78% on the Mendeley 
dataset. 

EfficientNetB0, 
XAI 

Implementation 

Sahin et 
al. (2024) 

[61] 

Utilize CNN models with Grad-
CAM++ to detect pneumonia from 
chest X-rays. 

EfficientNetB0 achieved the highest 
accuracy (95.03%) and F-measure 
(96.12%), while VGG-19 and 
Inception-V3 also showed 
competitive performance. 

EfficientNetB0 
An et al. 
(2024) 

[53] 

Develop a CNN model combining 
EfficientNetB0 and DenseNet121, 
enhanced by attention mechanisms 
for pneumonia detection. 

Achieved high diagnostic accuracy 
(95.19%) with enhanced precision 
(98.38%) and F1 score (96.06%) 
due to integrating attention 
mechanisms. 

 
2. Research Method 

This section outlines the methodology employed in this study to develop and evaluate deep learning models for 
thoracic abnormality detection. First, we introduce the deep learning architectures used, including MobileNet, 
ShuffleNet, and EfficientNet, detailing their design principles and advantages. Next, we describe the dataset selection 
process, including dataset characteristics, preprocessing steps, and the strategy for creating a balanced subset. The 
research design is then presented, covering dataset partitioning, model training procedures, and evaluation strategies. 
Finally, we discuss the performance metrics used to assess model effectiveness, alongside interpretability techniques 
such as Grad-CAM, ensuring both accuracy and clinical reliability. 

 
2.1 Deep Learning Models 
2.1.1 MobileNet 

MobileNetV2 is a lightweight deep learning architecture optimized for mobile and embedded applications. It 
improves upon the original MobileNet (as shown in Figure 1) by using depthwise separable convolutions to reduce 
computational complexity and inverted residuals with linear bottlenecks to enhance feature reuse and preserve 
important information [40][62]. These design choices make MobileNetV2 highly efficient, both in terms of speed and 
parameter count, without sacrificing classification performance. 

 

 
Figure 1. MobileNet Architecture: a) Normal Convolution Technique  b) Depthwise Separable Convolution Technique 

(as base technique of MobileNet)[63] 
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Its suitability for medical imaging tasks has been demonstrated in multiple studies. For instance, MobileNetV2-
based models have achieved over 90% accuracy in detecting COVID-19 and pneumonia from chest X-ray images 
[45][46][47]. These results support its use in this study for thoracic abnormality detection in resource-limited 
environments. 
 
2.1.2 ShuffleNet 

ShuffleNetV2 is a lightweight convolutional neural network optimized for real-time, low-power applications. It 
improves upon its predecessor by removing group convolutions (as seen in Figure 2a) to reduce memory access costs 
and introducing an equal channel width design and simplified operations for enhanced hardware efficiency [64]. A key 
strength of ShuffleNet architectures is the use of channel shuffling (as shown in Figure 2b), which improves information 
flow between feature groups after pointwise convolutions [64][65]. These architectural changes allow ShuffleNetV2 to 
maintain high speed and accuracy while minimizing computation—making it particularly suitable for embedded systems 
and mobile devices. In medical imaging, ShuffleNetV2 has demonstrated promising results. For example, Gu and Lee 
(2024) reported a pneumonia detection accuracy of 91.2% using transfer learning, outperforming MobileNetV2 and 
ResNet18 [49]. Similarly, An et al. (2022) found ShuffleNetV2 to be among the most efficient lightweight models for 
tuberculosis detection on embedded platforms, though with slightly lower recall compared to heavier networks like their 
proposed E-TBNet [50]. 

 

 

 

(a) (b) 
Figure 2. ShuffleNet Architecture a) Shuffle Unit with Pointwise Group Convolution (GConv) and Channel Shuffle b) 

Detailed of Channel Shuffle [65] 
 
2.1.3 EfficientNet 

EfficientNet architecture, as shown in Figure 3, is a lightweight architecture widely recognized for its ability to 
strike an optimal balance between performance and efficiency. It introduces a new approach to model scaling known 
as compound scaling [41]. EfficientNet uses a systematic method of compound scaling to expand the model 
proportionally across three dimensions: network depth, network width, and input image resolution [41]. Unlike traditional 
scaling approaches that only adjust one dimension at a time, compound scaling adjusts all these dimensions 
simultaneously using a fixed scaling coefficient. This allows the model to improve performance efficiently without leading 
to overfitting or underfitting. EfficientNet simplifies the usually manual process of tuning model architecture by optimizing 
the scaling of the network for various tasks [41]. This approach produces a more balanced and efficient architecture 
compared to models that scale just one dimension at a time. EfficientNet is designed to deliver high performance while 
using fewer parameters and computational power [41]. This results in models that are not only smaller but also faster 
during inference. The EfficientNet family, ranging from variants B0 to B7, offers a variety of options depending on 
resource constraints and the desired level of accuracy. EfficientNetB0 is used in this study because it is a smaller 
variant, making it suitable for devices with limited power, which aligns with the need in Indonesia. In contrast, larger 
variants like B7 provide higher accuracy for more demanding applications. Additionally, EfficientNet demonstrates high 
energy efficiency, making it ideal for mobile device applications where battery usage is a critical factor. As such, 
EfficientNet is well-suited for tasks like medical image analysis on devices with limited computational power but requiring 
high accuracy results.  
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Figure 3. Scaling Model: (a) is the baseline network; (b)-(d) are conventional scaling methods that increase one 

dimension of width, depth, or resolution; (e) is the multiple scaling method of EfficientNet, which uniformly enlarges 
the three dimensions with a constant ratio [41] 

 
2.2 Dataset 

The dataset used in this research is ChestX-ray8, introduced by Wang et al. from the National Institutes of Health 
(NIH) [34]. It is one of the largest publicly available collections of chest X-ray images, consisting of 108,948 frontal-view 
X-ray images from 32,717 unique patients. Each image is labeled with one or more of eight common thoracic diseases: 
Atelectasis, Cardiomegaly, Effusion, Infiltration, Mass, Nodule, Pneumonia, and Pneumothorax. The labels were 
obtained through automated text mining from radiology reports using Natural Language Processing (NLP) tools 
(MetaMap and DNorm), with negation and uncertainty detection applied to exclude erroneous labels. The dataset is 
multi-label, meaning each image can exhibit multiple abnormalities. 

The ChestX-ray8 dataset was chosen due to its clinical significance, particularly in the context of thoracic 
abnormality detection in Indonesia. The dataset covers a wide range of critical conditions such as pneumothorax, 
cardiomegaly, nodule/mass, consolidation, and infiltration, which are prevalent in the Indonesian population and 
represent significant diagnostic challenges (explained in Section 1: Introduction). 

Each chest X-ray image in the ChestX-ray8 dataset is originally sized at 1024×1024 pixels. However, in this 
study, we resized all images to 224×224 pixels to match the input requirements of the pretrained ImageNet model, 
which serves as the backbone for our deep learning architecture. This resizing step ensures compatibility with the 
pretrained convolutional neural networks while preserving essential visual features needed for disease classification. 

For this study, we focus on detecting five key abnormalities: Pneumothorax, Cardiomegaly, Nodule/Mass, 
Consolidation, and Infiltration, selected due to their clinical importance and representation in the dataset, as well as 
their relation to prevalent diseases in Indonesian. To create a balanced subset suitable for model training and 
evaluation, we selected 2,500 images per abnormality, totaling 12,500 images. This number was chosen based on the 
maximum available images for Cardiomegaly (2,776), which was capped at 2,500 for consistency across all classes. 
Although the dataset remains multi-label, this approach ensures equal representation across the five targeted 
abnormalities.  

The number of images (presented in Table 2) for each selected abnormality before sampling was: Pneumothorax 
(2,534), Cardiomegaly (2,525), Nodule/Mass (3,494), Consolidation (2,953), and Infiltration (4,678). After balancing, the 
dataset comprises an equal number of images per abnormality, though multi-label overlaps remain, preserving the 
complexity of the classification task. 

 
Table 2. Dataset Used with Five Selected Abnormalities 

Abnormality Number of Images 

Pneumothorax 2534 

Cardiomegaly 2525 

Nodule/Mass 3494 

Consolidation 2953 

Infiltration 4678 
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The dataset was divided into training and testing sets with an 80:20 split. Table 3 presents the split dataset, where 
80% (10,000 images – before k-fold) were used for model training and 20% (2,500 images) for testing. Additionally, to 
enhance model generalization and reduce overfitting, we employed 5-fold cross-validation (K=5) with a shuffled splitting 
method, ensuring that the training set was randomly reordered before being divided into five subsets. The model was 
trained on four subsets and validated on the fifth, iterating through all folds. 

 
Table 3. Split Dataset for Training Purposes 

Subset Number of Images 

Training 8000 
Testing 2500 

Validation (k-fold) 2000 

Total 12500 

 
This dataset configuration ensures a semi-balanced, multi-label, and clinically relevant input for training deep 

learning models, supporting the goal of developing efficient thoracic abnormality detection models for resource-limited 
healthcare settings. 
 
2.3 Research Design 
Figure 4 outlines the scenarios developed in this study, with the following details: 
1. Dataset Repository: The chosen dataset was acquired from NIH repository, as explained in Section 2.2. 
2. Dataset Reduction: Due to limited model training resources, the dataset is reduced to 12,500 images in total. These 

images contain five labels: pneumothorax, cardiomegaly, nodule/mass, consolidation, and infiltration. 
3. Normalization: Before the model training process begins, the pixel values of the images need to be normalized. This 

helps make the training process more efficient and prevents gradient overflow, which can occur when irrelevant 
gradients are used during training. 

4. Dataset Splitting: The dataset is split into a training set and a test set. The training set is used to train the model, 
while the test set is used to assess the final performance of the model. 

5. K-Fold Cross Validation: After splitting the data into training and test sets, the training set is divided into training and 
validation sets. The K-fold cross-validation technique is applied, with K = 5, meaning the data is split into 80% for 
training and 20% for validation. 

6. Model Training: Three models—MobileNet, ShuffleNet, and EfficientNet—are used in this study. These models are 
trained using the previously divided training dataset. 

7. Test Data Prediction: To evaluate the performance of each model, the trained models are tested using the test 
dataset that was set aside earlier. 

8. Model Saving: Once the models are trained, they are saved so they can be reused for future testing or deployment. 
9. Final Evaluation: The models are evaluated based on the predictions made on the test data to determine which 

model provides the best performance. This evaluation offers insights into the effectiveness of each model. 
10. Grad-CAM Visualization: Some images are predicted and shown along their abnormalities’ localization. This could 

help radiologists to understand and interpret the abnormalities using the exhibited heatmap. 
 

 
Figure 4. Research Workflow 
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2.4 Evaluation Metrics and Interpretability 
To ensure the robustness and generalization of the deep learning models for thoracic abnormality detection, 

comprehensive evaluation metrics and interpretability techniques are employed. K-Fold Cross Validation is 
implemented to mitigate overfitting and enhance model reliability by partitioning the dataset into K equal-sized folds, 
where each fold serves as a validation set once while the remaining K - 1 folds are used for training. This process is 
repeated K times, and the average performance across all folds is reported, ensuring every data point is utilized for 
both training and validation. Additionally, several performance metrics are used to assess diagnostic accuracy and 
consistency. Accuracy, which measures overall correctness, is calculated as the ratio of correctly predicted cases to 
total cases, as presented in Equation 1.  
 

Accuracy =
TP + TN

TP + TN + FP + FN
 (1) 

 
To evaluate classification quality, precision, recall, and F1 score are employed. Precision indicates the proportion 

of true abnormalities among all predicted abnormalities, which is calculated using Equation 2.  
 

Precision =
TP

TP + FP
 (2) 

 
Recall measures the proportion of correctly identified abnormalities among all actual abnormalities, which is 

calculated using Equation 3.  
 

Recall =
TP

TP + FN
 (3) 

 
The F1 score provides a balance between precision and recall, which is particularly useful for imbalanced 

datasets, as calculated in Equation 4.  
 

F1 Score =
2 × Precision × Recall

Precision + Recall
 (4) 

 
Furthermore, AUC-ROC (Area Under the Receiver Operating Characteristic Curve) is used to evaluate the 

model’s ability to differentiate between normal and abnormal cases, where a higher AUC signifies superior diagnostic 
performance. The ROC curve plots the true positive rate (sensitivity - TPR) against the false positive rate (FPR) across 
various classification thresholds, providing a comprehensive view of the model’s discriminatory power; both are 
calculated using Equation 5. 
 

TPR =
TP

TP + FN
 

(5)  

FPR =
FP

FP + TN
 

 
In addition to performance evaluation, interpretability is crucial for gaining clinician trust and ensuring practical 

applicability. Grad-CAM is employed to generate heatmaps that highlight the regions in chest X-rays contributing most 
to the model’s predictions. As shown in Figure 5, Grad-CAM highlights different thoracic abnormalities: pneumothorax, 
nodule, and cardiomegaly. The heatmaps are overlaid on the original images, with the red areas indicating regions of 
highest model attention. For instance, the pneumothorax heatmap shows intense activation near the collapsed lung 
area, while the nodule detection highlights localized spots indicative of potential malignancies. In cardiomegaly 
detection, Grad-CAM emphasizes the enlarged heart region, aligning with radiological markers. By visualizing these 
activation maps, clinicians can interpret the model’s focus areas, such as lung fields for tuberculosis or cardiomegaly, 
which shows strong activation around the heart area, consistent with an enlarged heart silhouette, a key indicator of 
heart failure. This not only enhances transparency but also facilitates clinical validation by ensuring the model ’s 
decision-making aligns with medical expertise. To further ensure reliability, expert feedback from radiologists is 
integrated into the evaluation process, allowing clinicians to assess whether the highlighted regions are consistent with 
their diagnostic reasoning. This combination of quantitative evaluation metrics and qualitative interpretability 
techniques ensures that the deep learning models are both accurate and clinically trustworthy, making them suitable 
for deployment in resource-limited settings, such as rural healthcare facilities in Indonesia. 
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Pneumothorax 

 
Nodule 

 
Cardiomegaly 

Figure 5. Samples of Grad-CAM Implementation for Detecting 3 Different Abnormalities [66] 
 
2.5 Hyperparmeter Configuration 

To maintain consistency and fairness across all compared models (MobileNetV2, ShuffleNetV2, and 
EfficientNetB0), the Hyperparameter Configuration presented in Table 4 contains a standardized set of 
hyperparameters used during the training process. 

 
Table 4. Hyperparameter Configuration 

Hyperparameter Value Description 

Input Image Size (224, 224) 
The size of the image after resizing (width × 

height), matching the requirements of the 
pretrained backbone. 

Number of Channels 3 
Images are in RGB format, consisting of three color 

channels. 

Number of Classes 5 
The model distinguishes between Pneumothorax, 
Cardiomegaly, Nodule/Mass, Consolidation, and 

Infiltration. 

Batch Size 512 
A large batch size is used to ensure training 

stability and memory efficiency. 

Number of Epochs 50 
A fixed number of training cycles to ensure fair 

evaluation of the models. 

Initial Learning Rate 1.00E-04 
The starting rate at which model weights are 

updated during optimization. 

Optimizer Adam 
An adaptive optimizer chosen for its efficiency with 

relatively small datasets. 

Loss Function 
BCEWithLogit

sLoss 
Suitable for multi-label classification tasks. 

Label Threshold 0.5 
The probability threshold for predicting a positive 

label. 

Backbone Freezing No (False) 
All layers of the model are fine-tuned, meaning no 

layers are frozen during training. 

 
This standardized approach to hyperparameter selection ensures that the training process is conducted in a 

consistent and unbiased manner, allowing for a fair comparison between the performances of MobileNetV2, 
ShuffleNetV2, and EfficientNetB0. By employing the same training settings, differences in model performance can be 
attributed more accurately to the model architecture rather than variations in training methodology. 
 
3. Results and Discussion 
3.1 Evaluation of Model Performance on Validation Data 

To determine the most effective deep learning model for thoracic abnormality detection, three lightweight 
architectures—MobileNetV2, ShuffleNetV2, and EfficientNetB0—were evaluated based on F1 score, accuracy, 
precision, recall, and AUC-ROC. The results, averaged across K-fold cross-validation, are presented in Table 5. The 
best model will continue to final evaluation in testing stage for comprehensive analysis. 
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Table 5. Model Performance on Validation Data (Average and Standar Deviation Across K-Folds) 

Model F1 Score Accuracy Precision Recall AUC-ROC 

MobileNetV2 0.494 ± 0.008 0.732 ± 0.003 0.486 ± 0.009 0.505 ± 0.009 0.72 ± 0.005 

ShuffleNetV2 0.463 ± 0.014 0.74 ± 0.008 0.512 ± 0.014 0.431 ± 0.016 0.697 ± 0.01 

EfficientNetB0 0.563 ± 0.009 0.773 ± 0.005 0.573 ± 0.007 0.558 ± 0.01 0.772 ± 0.005 

 
From Table 5, it can be seen that EfficientNetB0 consistently outperforms the other two models across all 

evaluation metrics, achieving the highest F1 score (0.563 ± 0.009), accuracy (0.773 ± 0.005), recall (0.558 ± 0.010), 
and AUC-ROC (0.772 ± 0.005). The low standard deviation across all metrics suggests stable performance across 
different validation folds. In contrast, MobileNetV2 performs moderately well, with an F1 score of 0.494 ± 0.008, but 
struggles with precision (0.486 ± 0.009), which indicates a higher false positive rate. ShuffleNetV2 performs the worst, 
with the lowest F1 score (0.463 ± 0.014) and recall (0.431 ± 0.016), indicating that it frequently fails to detect actual 
positive cases, a serious limitation in medical diagnostics. 

MobileNetV2 demonstrates reasonable stability, particularly in accuracy (±0.003), but its higher variance in 
precision (±0.009) and recall (±0.009) suggests occasional inconsistencies in detecting abnormalities. In contrast, 
ShuffleNetV2 exhibits the highest performance fluctuations, with F1 score SD (±0.014) and recall SD (±0.016), making 
it the least reliable model due to its unpredictable false negative rates. This instability poses a significant risk in medical 
imaging, where missing abnormalities can be life-threatening. 

While averaged results provide an overall performance assessment, selecting the best model requires identifying 
the highest F1 score achieved in any validation fold. Table 6 presents the per-fold F1 scores for each model. 

 
Table 6. F1 Score per Fold for Each Model 

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Best 

MobileNetV2 0.488 0.496 0.501 0.504 0.483 Fold 4 (0.504) 

ShuffleNetV2 0.454 0.453 0.448 0.473 0.485 Fold 5 (0.485) 

EfficientNetB0 0.546 0.566 0.566 0.568 0.569 Fold 5 (0.569) 

 
From this per-fold analysis, EfficientNetB0 achieves the highest F1 score of 0.569 in Fold 5, outperforming 

MobileNetV2 (0.504 in Fold 4) and ShuffleNetV2 (0.485 in Fold 5). Moreover, EfficientNetB0 consistently scores above 
0.546 across all folds, whereas the other models exhibit greater variability in performance. 

To finalize the model selection, Table 7 summarizes the highest F1 score achieved by each model and 
determines whether it qualifies as the best-performing model. 

 
Table 7. Selecting the Best Model Based on Maximum F1 Score 

Model F1 Score 
Selected as 
Best Model? 

MobileNetV2 Fold 4 (0.504) No 

ShuffleNetV2 Fold 5 (0.485) No 

EfficientNetB0 Fold 5 (0.569) Yes 

 
With the highest single-fold F1 score (0.569 in Fold 5) and overall superior performance across all metrics, 

EfficientNetB0 is conclusively the best model for thoracic abnormality detection. Its higher recall (0.558 ± 0.010) is 
particularly valuable in medical imaging, as minimizing false negatives is crucial for avoiding missed diagnoses. 
Additionally, its AUC-ROC of 0.772 further supports its superior ability to distinguish between normal and abnormal 
cases. With EfficientNetB0 selected as the best model, the next step is to evaluate its performance on the test dataset.  
 
3.2 Evaluation of Model Performance on Testing Data 

To assess the real-world applicability of the models, we evaluated MobileNetV2, ShuffleNetV2, and 
EfficientNetB0 on the testing dataset, analyzing their ability to classify pneumothorax, cardiomegaly, nodule/mass, 
consolidation, and infiltration. Performance was measured using accuracy, precision, recall, F1 score, and AUC-ROC, 
ensuring a balanced evaluation of classification effectiveness. The analysis focuses on per-class performance, followed 
by a macro-average comparison to determine the most effective model for thoracic abnormality detection. 
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3.2.1 MobileNetV2 Testing Results Analysis 
We evaluated the performance of MobileNetV2 in classifying five thoracic abnormalities—pneumothorax, 

cardiomegaly, nodule/mass, consolidation, and infiltration—using accuracy, precision, recall, F1 score, and AUC-ROC. 
Table 8 summarizes the results: 

 
Table 8. MobileNetV2 Testing Results 

Label Accuracy Precision Recall F1 Score ROC-AUC 

pneumothorax 0.835 0.609 0.590 0.599 0.842 
cardiomegaly 0.710 0.398 0.415 0.406 0.663 
nodule/mass 0.592 0.457 0.490 0.473 0.590 
consolidation 0.802 0.480 0.528 0.503 0.786 

infiltration 0.731 0.468 0.506 0.486 0.713 
MacroAVG 0.734 0.483 0.506 0.494 0.719 

 
The model demonstrated moderate performance, as indicated by a macro-average F1 score of 0.494 and AUC-

ROC of 0.719. The recall (0.506) surpassing precision (0.483) suggests that MobileNetV2 detects more abnormal cases 
but at the cost of false positives. Pneumothorax detection was the strongest, achieving the highest accuracy (0.835), 
precision (0.609), and AUC-ROC (0.842), likely due to well-defined radiological features. Conversely, cardiomegaly 
exhibited the weakest performance with the lowest precision (0.398), recall (0.415), and F1 score (0.406), indicating 
difficulty in distinguishing enlarged hearts due to their subtle presentation. Consolidation detection showed a relatively 
strong recall (0.528) but lower precision (0.480), suggesting moderate performance. Both nodule/mass (AUC-ROC = 
0.590) and infiltration (AUC-ROC = 0.713) had lower classification effectiveness, likely due to their variable and less 
distinct features. 

The AUC-ROC curve on Figure 6 further illustrates MobileNetV2’s ability to differentiate abnormalities. 
Pneumothorax had the highest AUC-ROC (0.842), reinforcing its strong classification capability. Consolidation followed 
with 0.786, indicating relatively good sensitivity. Infiltration scored 0.713, while cardiomegaly (0.663) and nodule/mass 
(0.590) performed the worst, with near-random classification ability. The model’s limitations in detecting cardiomegaly 
and nodule/mass could be attributed to the subtle shape variations in the former and the small, diverse nature of lung 
nodules in the latter. 
 

 
Figure 6. MobileNetV2 ROC-Curves 

 
To improve performance, enhancements such as data augmentation (for better generalization on cardiomegaly 

cases) and advanced feature extraction (for detecting small lesions like nodules/masses) could be beneficial. While 
MobileNetV2 performs well for pneumothorax detection and may be useful for automated triage in resource-limited 
settings, it requires further optimization for detecting cardiomegaly and nodule/mass. 
 

https://doi.org/10.22219/kinetik.v10i3.2268


Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control 
 

© 2025 The Authors. Published by Universitas Muhammadiyah Malang 
This is an open access article under the CC BY NC SA license (https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

 

 

                    

 

422 

3.2.2 ShuffleNetV2 Testing Results Analysis 
ShuffleNetV2’s performance was consistently evaluated as in the previous section (3.2.1). The results are 

presented in Table 9. 
 

Table 9. ShuffleNetV2 Testing Results 

Label Accuracy Precision Recall F1 Score ROC-AUC 

pneumothorax 0.835 0.609 0.590 0.599 0.842 
cardiomegaly 0.710 0.398 0.415 0.406 0.663 
nodule/mass 0.592 0.457 0.490 0.473 0.590 
consolidation 0.802 0.480 0.528 0.503 0.786 

infiltration 0.731 0.468 0.506 0.486 0.713 
MacroAVG 0.751 0.518 0.450 0.481 0.713 

 
The macro-average F1 score of 0.481 indicates moderate classification performance, slightly lower than 

MobileNetV2 (0.494). ShuffleNetV2, however, achieves higher precision (0.518) but suffers from lower recall (0.450), 
leading to fewer false positives but more missed cases. Its best metrics are accuracy (0.751) and AUC-ROC (0.713), 
showing a fair ability to differentiate between normal and abnormal cases. However, recall (0.450) is the weakest, 
suggesting it misses a significant number of true positive cases. 

ShuffleNetV2 excels in pneumothorax detection, achieving the highest accuracy (0.859) and AUC-ROC (0.827), 
with precision (0.692) being the best among all conditions. While it produces fewer false positives, its recall (0.588) is 
still suboptimal. Conversely, cardiomegaly detection is the model’s weakest area, with the lowest recall (0.331), F1 
score (0.372), and a poor AUC-ROC (0.662), indicating an inability to distinguish cardiomegaly from normal cases 
effectively. 

Performance for nodule/mass (AUC-ROC = 0.614, F1 score = 0.461) and consolidation (AUC-ROC = 0.759, F1 
score = 0.483) is moderate, with slight improvement over MobileNetV2 for nodule/mass but slightly worse results for 
consolidation. Infiltration detection (AUC-ROC = 0.704, F1 score = 0.455) also lags behind MobileNetV2, showing that 
ShuffleNetV2 struggles with diffuse lung conditions. 

The AUC-ROC curve, as shown in Figure 7, further illustrates the model’s classification ability across conditions. 
Pneumothorax (AUC = 0.827) is the best-performing class, with strong distinction from normal cases. Consolidation 
(AUC = 0.759) and infiltration (AUC = 0.704) show moderate classification ability, though with some misclassification 
issues. However, cardiomegaly (AUC = 0.662) and nodule/mass (AUC = 0.614) remain weak, struggling to differentiate 
from normal cases.  

 

 
Figure 7. ShuffleNetV2 ROC-Curves 

 
To enhance ShuffleNetV2’s classification performance, optimizing recall for cardiomegaly is crucial, including 

weighted loss functions to improve sensitivity. Feature extraction enhancements, such as multi-scale convolutional 
filters and attention mechanisms, could help detect small abnormalities such as nodules. 
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3.2.3 EfficientNetB0 Testing Results Analysis 
In this section, we analyze the test performance of EfficientNetB0, focusing on its ability, as shown in  
Table 10. 

 
Table 10. EfficientNetB0 Testing Results 

Label Accuracy Precision Recall F1 Score ROC-AUC 

pneumothorax 0.868 0.696 0.660 0.678 0.880 
cardiomegaly 0.756 0.490 0.430 0.458 0.699 
nodule/mass 0.618 0.488 0.519 0.503 0.646 
consolidation 0.844 0.587 0.598 0.592 0.835 

infiltration 0.772 0.547 0.548 0.548 0.764 
MacroAVG 0.772 0.562 0.551 0.556 0.765 

 
EfficientNetB0 outperforms MobileNetV2 and ShuffleNetV2 across all conditions, achieving the highest macro-

average F1 score (0.556) and AUC-ROC (0.765), surpassing MobileNetV2 (0.494, 0.719) and ShuffleNetV2 (0.481, 
0.713). It has the strongest recall (0.551), ensuring better identification of abnormal cases while minimizing false 
negatives. 

The best performance is seen in pneumothorax detection, with the highest accuracy (0.868), precision (0.696), 
F1 score (0.678), and AUC-ROC (0.880). This suggests pneumothorax remains the easiest condition for CNN-based 
models to detect, with EfficientNetB0 significantly outperforming MobileNetV2 (AUC = 0.842) and ShuffleNetV2 (AUC 
= 0.827). 

For nodule/mass detection, EfficientNetB0 demonstrates the greatest improvement, achieving the highest recall 
(0.519) and better AUC-ROC (0.646) than MobileNetV2 (0.590) and ShuffleNetV2 (0.614). This indicates improved 
sensitivity in detecting small lung abnormalities, although performance remains moderate and requires further 
optimization. 

EfficientNetB0 also excels in consolidation detection, with the highest recall (0.598), precision (0.587), and AUC-
ROC (0.835), making it highly effective in diagnosing pneumonia or lung infections. Similarly, infiltration detection shows 
notable improvement, with better recall (0.548), the highest F1 score (0.548), and an AUC-ROC of 0.764, outperforming 
MobileNetV2 (0.713) and ShuffleNetV2 (0.704). 

While cardiomegaly detection remains challenging, EfficientNetB0 still achieves the highest AUC-ROC (0.699) 
and F1 score (0.458) compared to MobileNetV2 (0.663, 0.438) and ShuffleNetV2 (0.662, 0.431). Although classification 
remains difficult due to subtle heart enlargement, EfficientNetB0 shows measurable improvement. 

 

 
Figure 8. EfficientNetB0 ROC-Curves 

 
EfficientNetB0 consistently achieves the highest AUC-ROC across all abnormalities, as shown in Figure 8 for its 

curve and Table 11 for a comparison across models, demonstrating superior classification ability. The most significant 
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improvements are seen in pneumothorax, nodule/mass, and consolidation detection, while cardiomegaly remains the 
most difficult to classify. 

Table 11. AUC-ROC Comparison of Models 

Label MobileNetV2 ShuffleNetV2 EfficientNetB0 

pneumothorax 0.842 0.827 0.880 
cardiomegaly 0.663 0.662 0.699 
nodule/mass 0.590 0.614 0.646 
consolidation 0.786 0.759 0.835 

infiltration 0.713 0.704 0.764 

 
To further optimize EfficientNetB0, cardiomegaly classification can be improved through segmentation-based 

pretraining and increasing labeled cases in the dataset. Nodule/mass detection can benefit from multi-scale feature 
extraction and attention mechanisms to enhance small lesion detection. 
 
3.2.4 Macro-Average Metrics Analysis 

The final comparative analysis evaluates the overall performance of MobileNetV2, ShuffleNetV2, and 
EfficientNetB0 based on macro-average accuracy, precision, recall, F1 score, and AUC-ROC. As seen in Table 12, 
EfficientNetB0 consistently outperforms the other models across all metrics, making it the most suitable for thoracic 
abnormality detection. 

 
Table 12. Macro-Average Performance Comparison Across Models 

Label Accuracy Precision Recall F1 Score ROC-AUC 

MobileNetV2 0.734 0.483 0.506 0.494 0.719 
ShuffleNetV2 0.751 0.518 0.450 0.481 0.713 
EfficientNetB0 0.772 0.562 0.551 0.556 0.765 

 
EfficientNetB0 demonstrated superior classification balance in our study, achieving the highest accuracy (0.772), 

precision (0.562), recall (0.551), and F1 score (0.556). The high recall highlights its ability to minimize missed abnormal 
cases, which is crucial in medical imaging, while the high precision reduces false alarms. In contrast, MobileNetV2 (F1 
score: 0.494, AUC-ROC: 0.719) and ShuffleNetV2 (F1 score: 0.481, AUC-ROC: 0.713) performed weaker, with 
ShuffleNetV2 notably struggling due to low recall (0.450), indicating an increase in false negatives. These findings align 
with the literature where MobileNetV2 has demonstrated notable accuracy in various contexts, such as 98.65% in 
COVID-19 detection without transfer learning (Kolonne et al. 2021) [45], 94% on the CXR-14 dataset (Iqbal et al. 2024) 
[48], and significant improvements with transfer learning, achieving 90.9% accuracy (Gu and Lee 2024) [49]. In 
lightweight model comparisons, MobileNetV2 excelled in accuracy (90%) while ShuffleNetV2 was more efficient in size 
(An et al. 2022) [50]. However, our study’s relatively lower F1 scores for MobileNetV2 and ShuffleNetV2 also resonate 
with the limitations noted in previous studies, such as the lower F1 score of 0.435 in CheXNet, despite outperforming 
radiologists (Pranav Rajpurkar et al. 2017) [66]. This suggests that while these lightweight models are efficient, they 
may compromise on balanced classification, unlike EfficientNetB0, which shows more consistent performance across 
key metrics. 
 
3.3 Comprehensive Performance Across Models 

The performance evaluation of each model during the testing phase was based on three main factors presented 
in Table 13: inference time on 2,500 X-ray images, the number of trainable parameters, and final classification accuracy. 

 
Table 13. Accuracy, Testing Time, and Model Complexity Across Models 

Model Accuracy 
Testing Time 

(s) 

Testing Time 
Per Image 

(ms) 

Trainable 
Parameter 

MobileNetV2 0.734 76.37 ~30.5 2,230,277 
ShuffleNetV2 0.751 44.04 ~17.6 1,258,729 
EfficientNetB0 0.772 82.53 ~33.0 4,013,953 

 
EfficientNetB0 achieved the highest accuracy (0.772), demonstrating strong generalization and feature 

representation. However, it also had the longest inference time (82.53 seconds) and the most parameters (over 4 
million), making it less suitable for computationally limited environments. ShuffleNetV2 proved the most efficient, with 
the shortest inference time (44.04 seconds) and the fewest parameters (~1.26 million), while maintaining competitive 
accuracy (0.751), even surpassing MobileNetV2 (0.734), which had more parameters (~2.23 million) and a longer 
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inference time (76.37 seconds). This shows that model efficiency does not always compromise performance when the 
architecture is well designed. 

Regarding average inference time per image, ShuffleNetV2 took only 17.6 ms, significantly faster than 
EfficientNetB0 (33.0 ms) and MobileNetV2 (30.5 ms), making it ideal for rapid-response applications like mass 
screening or remote disease detection. A bubble chart (Figure 9) visualizes the trade-offs, with EfficientNetB0 in the 
upper right (high accuracy, high complexity), ShuffleNetV2 in the lower left (high efficiency, moderate accuracy), and 
MobileNetV2 in the middle (balanced performance). 
 

 
Figure 9. Comprehensive Performance Across Models in Bubble Chart 

 
In summary, EfficientNetB0 offers the highest accuracy, ShuffleNetV2 excels in efficiency, and MobileNetV2 

provides a balanced approach. These models are particularly relevant for mobile and edge applications where efficiency 
and portability are essential. 
 
3.4 Grad-CAM Visualization Analysis 

Based on Figure 10 and Table 14, the Grad-CAM visualization of EfficientNetB0 highlights both its strengths and 
limitations in thoracic abnormality detection. The true labels and ground-truth localization in this analysis are obtained 
from Roboflow’s annotated dataset [67], which provides accurate bounding boxes for abnormalities. This dataset serves 
as the reference for evaluating the model’s ability to correctly identify and localize thoracic diseases. 
 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 10. Lung Image with Grad-CAM Visualization: (a) Ground truth image, (b) true labels and localization taken 
from Roboflow [67], (c) Grad-CAM results predicted by EfficientNetB0 
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Table 14. Percentage of Prediction Result of 1 Image for Grad-CAM Visualization 

Label Actual Label EfficientNetB0 is match? 

pneumothorax No 0.93 - Yes No 
cardiomegaly Yes 0.06 - No No 
nodule/mass Yes 0.01 - No No 
consolidation No 0.00 - No No 

infiltration Yes 0.70 - Yes Yes 

 
However, the model incorrectly predicts pneumothorax (0.93), likely confusing infiltration for a collapsed lung, 

while correctly identifying infiltration (0.70). Despite the presence of cardiomegaly and nodule/mass in the ground truth 
annotations, EfficientNetB0 assigns very low probabilities to these conditions (0.06 and 0.01, respectively), indicating 
poor sensitivity in their detection. 

These findings align with previous research but also indicate some distinct challenges. Gakhar et al. (2022) 
achieved a high AUC for CXR triaging (0.99) and disease classification (0.79) [60]. Their use of GradCAM visualization 
enhanced interpretability, similar to the current study's approach. However, EfficientNetB0 in this study demonstrates a 
notable limitation in sensitivity for conditions like cardiomegaly and nodules. Additionally, Sahin et al. (2024) applied 
EfficientNetB0 with Grad-CAM++ for pneumonia detection, achieving the highest accuracy (95.03%) and F-measure 
(96.12%), indicating strong performance for specific conditions [61]. In contrast, the present analysis highlights the 
model's difficulty in detecting less distinct thoracic abnormalities, suggesting that EfficientNetB0's architecture may 
benefit from enhanced multi-scale feature extraction and tailored training for complex pathologies. 

To enhance accuracy, segmentation-based pretraining for cardiomegaly, multi-scale feature extraction for nodule 
detection, and better-balanced training data are needed. While EfficientNetB0 demonstrates strong localization for lung 
opacities, it requires further refinement to minimize false positives and improve sensitivity to less distinct pathologies, 
particularly for cardiomegaly and nodules/masses. 

 
3.5 Implications 

The findings from this study have significant implications for healthcare in resource-limited settings, particularly 
in Indonesia, where there is a critical shortage of radiologists. The demonstrated effectiveness of EfficientNetB0 for 
detecting thoracic abnormalities, such as pneumothorax and consolidation, highlights the potential of AI-assisted 
diagnostic tools to reduce diagnostic delays and improve patient outcomes. 

Integrating EfficientNetB0 into routine clinical practice could enhance the capacity of healthcare facilities to 
manage high patient volumes, especially in rural and underserved areas. The model's ability to localize abnormalities 
using Grad-CAM also supports its potential for aiding radiologists by visually identifying areas of concern, thereby 
speeding up the diagnostic process. 

Furthermore, the relatively efficient performance of mobile-friendly models such as MobileNetV2 and 
ShuffleNetV2 suggests that lightweight AI solutions can be feasibly implemented in low-resource environments. These 
models, when integrated into mobile health applications, can support point-of-care diagnosis, which is crucial for early 
disease detection and timely intervention. 
 
3.6 Limitation and Future Works 

Although EfficientNetB0 demonstrated superior performance in detecting thoracic abnormalities, several 
limitations warrant attention. The model’s sensitivity for subtle conditions like cardiomegaly and nodules/masses 
remains limited, indicating challenges in distinguishing fine-grained features. Future research should enhance sensitivity 
through segmentation-based pretraining and multi-scale feature extraction. 

The reliance on the ChestX-ray8 dataset may limit generalizability, as it might not fully capture the diversity of 
clinical cases encountered in real-world settings. Incorporating more diverse and locally sourced data would improve 
robustness. Additionally, while Grad-CAM provides visual interpretability, its outputs sometimes fail to align with clinical 
reasoning. Advanced interpretability techniques, such as Grad-CAM++ or attention-based methods, could enhance 
model transparency [53], [61]. 

EfficientNetB0's computational demands also pose challenges for deployment on low-power devices. Optimizing 
the model through techniques like pruning and quantization is essential for mobile implementation. Furthermore, 
prospective clinical validation is needed to confirm real-world applicability, as current evaluations are based solely on 
retrospective datasets. 

Future work should focus on improving sensitivity, interpretability, mobile optimization, and clinical validation to 
enhance the model’s practical utility in resource-limited healthcare settings. 
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4. Conclusion 

This study evaluated three mobile deep learning models—MobileNetV2, ShuffleNetV2, and EfficientNetB0—for 
automated thoracic abnormality detection in chest X-rays, addressing the critical shortage of radiologists in Indonesia. 
EfficientNetB0 emerged as the top-performing model, achieving a macro-average F1 score of 0.556 and an AUC-ROC 
of 0.765, outperforming both MobileNetV2 and ShuffleNetV2. This macro-average F1 score represents the model’s 
balanced performance across multiple abnormalities, including pneumothorax and consolidation, where it demonstrated 
strong localization. These findings highlight EfficientNetB0’s potential as a practical AI-assisted diagnostic tool, 
especially suitable for resource-limited healthcare settings in Indonesia. Despite its strengths, the model faced 
challenges in detecting cardiomegaly and nodules/masses, indicating the need for enhanced sensitivity through 
segmentation-based pretraining and multi-scale feature extraction. Future research should focus on improving model 
interpretability, reducing false positives, and integrating domain-specific fine-tuning to maximize clinical applicability. 
EfficientNetB0’s high accuracy and efficiency make it a promising solution to support healthcare delivery in Indonesia, 
particularly in areas with limited medical expertise and resources. 
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