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Arrhythmia is a cardiovascular disorder commonly detected through 
electrocardiogram (ECG) signal analysis. However, classifying arrhythmias 
based on ECG signals remains challenging due to signal complexity and 
individual variability. This study aims to develop a more accurate and efficient 
method for arrhythmia classification. The proposed method utilizes Kernel 
Principal Component Analysis (KPCA) and the naïve Bayes algorithm to 
classify arrhythmic ECG signals. KPCA is chosen for its ability to reduce data 
dimensionality, facilitating the processing of complex ECG signal and 
improving classification accuracy by minimizing noise. The naïve Bayes 
algorithm is chosen for its simplicity and computational speed, as well as its 
effective performance, even with limited data. ECG signals are processed 
using KPCA to reduce data dimensionality and extract relevant features. 
Subsequently, the naïve Bayes algorithm is then applied to classify the ECG 
signals into four categories: Premature Atrial Contraction (PAC), Premature 
Ventricular Contraction (PVC), Left Bundle Branch Block (LBBB), and Right 
Bundle Branch Block (RBBB).  The model's performance is evaluated using 
metrics such as accuracy, sensitivity, specificity, precision, and F1-score. The 
naïve Bayes model achieves an overall accuracy of 97.67%, with the highest 
performance observed in the RBBB class at 99.33%. Additionally, the F1-
scores across all classes range from 96.62% to 98.57%, demonstrating the 
model's capability in detecting arrhythmias effectively. These results indicate 
that the combination of KPCA and naïve Bayes is effective for arrhythmic ECG 
signals classification.  

 
1. Introduction 

An electrocardiogram (ECG) is a non-invasive recording of the heart’s electrical activity and is widely used for 
diagnosing and monitoring cardiovascular diseases such as arrhythmias [1]. The ECG is designed to analyze 
arrhythmias and is also used to monitor heart function by capturing electrical activity. It is characterized by distinct 
waveform components, namely the P, QRS, and T waves [2]. Arrhythmia, defined as an irregular heartbeat rhythm, is 
a potentially life-threatening condition that can lead to heart attack and sudden cardiac death [1]. With the development 
of computer technology, many automated diagnostic methods have been proposed to analyze ECG signals. One of the 
prominent approaches involves the use of machine learning for automatic classification.   

 Machine learning-based classification employs various algorithms.  For instance, Support Vector Machine (SVM) 
has been utilized as a classifier to process features extracted from ECG signals using Discrete Wavelet Transform 
(DWT) [3].  Other studies incorporate SVM, K-Nearest Neighbors (KNN), and Random Forest (RF) methods, as well as 
combinations of these three methods [4]. Additionally, it combines LSTM to utilize temporal information and FCN to 
capture local features in ECG signals [5] using SVM, KNN, GBDT, and RF. Furthermore, the MHO algorithm is also 
used to optimize the learning parameters of the ML classifier [6], utilizing a metaheuristic optimization-based classifier 
for better feature selection before classification [7].  

The inherent complexity of ECG signals presents a major challenge to arrhythmia classification.  Variations in 
waveforms and time intervals can complicate the arrhythmia classification process. In addition, individual variability in 
ECG patterns, influenced by factors such as age, health conditions, and therapies received, further complicates the 
development of reliable classification models. Another critical issue is the classification accuracy of existing methods, 
many of which still struggle to reliably detect various arrhythmia types. Dataset limitations, particularly the use of the 
MIT-BIH Arrhythmia Database, can affect the generalizability of the model, especially if the dataset is unbalanced or 
does not encompass the full variety of arrhythmias [8].   
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This study addresses several issues, particularly those related to arrhythmia classification using ECG signals. 
First, the complexity of the ECG signal variations in waveform and various time intervals complicates the classification 
process. Furthermore, individual variability in ECG patterns adds to the challenge of developing a reliable classification 
model. The relatively low accuracy of existing methods indicates the need to develop more accurate methods. Dataset 
limitations, such as class limitations, also affect the model's ability to generalize. On the other hand, processing data to 
reduce noise and improve signal quality becomes a vital defense. To overcome these obstacles, this study proposes a 
classification approach that combines Kernel Principal Component Analysis (KPCA) for dimensionality reduction and 
the naïve Bayes algorithm for classification. This integrated method is expected to improve the accuracy and efficiency 
of arrhythmia detection from ECG signals.  

This study discusses the current field of ECG analysis and classification, focusing on detecting arrhythmia, a 
potentially fatal heart condition. In recent years, research in digital health and medical technology has grown rapidly, 
driven by advances in machine learning algorithms and signal processing. With the increasing amount of available 
health data, advanced methods, such as KPCA and naïve Bayes, have been applied to improve the accuracy and 
efficiency of ECG signal classification. 

KPCA has been effectively used in various studies to improve ECG signal analysis and classification. It captures 
the nonlinear relationship between ECG and respiration signals, improving accuracy and computational efficiency [9]. 
In [10], KPCA was combined with wavelet techniques for cardiac signal feature extraction, resulting in high classification 
accuracy when used with the KNN algorithm. KPCA has also been applied alongside PCA and AKPCA for feature 
extraction in SVM classification, yielding excellent sensitivity and accuracy [11]. Furthermore, in [12], KPCA was used 
for nonlinear feature extraction in support vector regression (SVR)-based arrhythmia detection, which improves the 
classification performance. KPCA serves to reduce the dimensions of both linear and nonlinear features of ECG signals, 
resulting in an accumulative contribution of more than 90% with only five principal components, demonstrating its 
superiority over standard PCA [13].  

Naïve Bayes has also been used in various studies to classify cardiac disorders based on ECG signals. In [14], 
Naïve Bayes was used to classify cardiac arrhythmias using features extracted from ECG signals, such as PT, BPM, 
and RR intervals [15]. Naïve Bayes was applied after signal processing using Empirical Mode Decomposition (EMD) 
and PCA, which facilitated feature extraction   and the subsequent identification of cardiac abnormalities. In [16], naïve 
Bayes was used along with feature selection techniques to classify different types of cardiac arrhythmias, including 
tachycardia and bradycardia.  Similarly [17] employed naïve Bayes to classify types of cardiac arrhythmias based on 
RR intervals and other statistical features extracted from ECG signals. Naïve Bayes was used in combination with other 
algorithms to detect various cardiac arrhythmias [18].  

A study by [19] proposed using the Long Short-Term Memory (LSTM) method as a classifier for detecting heart 
conditions while employing the Continuous Wavelet Transform (CWT) as a feature extraction to eliminate noise during 
data collection. These methods perform well in feature extraction and classification of ECG signals.  The use of LSTM 
allowed methods to identify important features more effectively. Furthermore, the naïve Bayes algorithm will be applied 
to perform classification based on the extracted features. With this approach, this research can make a significant 
contribution to improving accuracy in arrhythmia classification and increasing the efficiency of ECG-based medical 
diagnosis. The selection of Kernel Principal Component Analysis (KPCA) and naïve Bayes methods in this study is 
based on several strong considerations related to their effectiveness and reliability in classifying arrhythmic ECG 
signals. KPCA was chosen for its ability to capture nonlinear relationships within the data, particularly relevant for ECG 
signals that exhibit complex waveform variations [9]. By using kernel techniques, KPCA can reduce data dimensionality 
while retaining important features that may not be identified by linear dimensionality reduction methods such as PCA 
[10]. In addition, this dimensionality reduction helps to reduce noise and redundancy, thereby improving the accuracy 
of the classification model. On the other hand, naïve Bayes was chosen as the classification algorithm due to its 
simplicity and effectiveness in many applications, including ECG signal classification. Based on Bayes' theorem and 
the assumption of independence between features, naïve Bayes enables fast and efficient probability calculation, 
making it particularly suitable for datasets that may be imbalanced [14]. The results of this study successfully extracted 
ECG signals using CWT, thus improving the understanding of ECG characteristics. This research also succeeded in 
classifying ECG signals using the LSTM method, which achieved a training accuracy of 98.4% and a testing accuracy 
of 94.42 %. 

In this study, the dataset was obtained from the MIT-BIH Arrhythmia database. This ECG dataset has been used 
previously with CWT for feature extraction and LSTM for classification [19]. The db6 wavelet transform was employed 
to improve the quality of ECG signal data and reduce noise [20]. ECG signals from a single channel (single-lead) were 
used to detect and classify arrhythmias based on three primary features, namely RR intervals, signal morphology, and 
higher-order statistical measures [21]. 
 
The contributions of the proposed study are as follows: 
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• Implementation of an efficient and accurate arrhythmia classification model to identify arrhythmia types from ECG 
signals by integrating KPCA and naïve Bayes. 

• Evaluation of the performance of naïve Bayes in classifying arrhythmia using performance parameters. 
 

To address the problems faced in this study, several potential solutions are proposed. First, the development of 
more sophisticated machine learning algorithms, such as Deep Learning, can improve classification accuracy by 
allowing the identification of deeper patterns in the ECG signal. In addition, augmenting the dataset with image 
processing techniques or adding artificial variations can help overcome class imbalances and expand the variety of 
data available for training models. The application of better noise reduction techniques, such as adaptive filtering or 
wavelet techniques, is also important to improve signal quality before feature extraction. Expanding the dataset by 
combining data from other sources can increase the variety and volume of arrhythmia types represented. Furthermore, 
optimizing algorithm parameters through a more thorough hyperparameter search can assist in identifying optimal 
model configurations. Finally, the use of more evaluation metrics and cross-validation of the data will ensure a 
comprehensive assessment of model performance. By implementing these solutions, it is hoped that the study can 
produce a more accurate and effective arrhythmia classification model.   
 
2. Method 
2.1 Dataset Collection 

This study used the MIT-BIH Arrhythmia Database, one of the most well-known and frequently used datasets in 
arrhythmia detection research using ECG signals. This dataset was obtained from outpatients at Beth Israel Hospital 
and developed by the Massachusetts Institute of Technology (MIT). This dataset consists of 48 ECG recordings from 
47 subjects. Each recording has a duration of 30 minutes and is taken from two ECG channels (leads). Data were 
recorded at a sampling frequency of 360 samples per second [22]. Figure 1 shows the ECG signal display from the 
PhysioNet website, where the dataset was obtained. 

 

 
Figure 1. ECG Signal on the PhysioNet Display 

 
The ECG dataset used in this study includes ECG data on Premature Atrial Contraction (PAC), Premature 

Ventricular Contraction (PVC), Right Bundle Branch Block (RBBB), and Left Bundle Branch Block (LBBB). The number 
of ECG recordings for all of these classes is contained in the MIT-BIH Arrhythmia database, as shown in Table 1. 

 
Table 1. Number of Data in MIT-BIH Arrhythmia Database 

No Class (Annotated) Total 

1 PAC (A) 2546 
2 PVC (V) 7130 
3 RBBB (R) 7259 
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To balance the dataset for this study, 4,000 data points were selected, with 1,000 data points per class. Research 

data for the PAC class was taken from recording 232; for PVC, from recordings 200 and 233; for RBBB class, from 
recording 231; and for LBBB, from recording 214. The data for each class was saved in a separate file with a NumPy 
(.npy) extension.  Each dataset is stored in a three-dimensional array with the shape (1,000, 400, 2). The first dimension 
represents the number of samples taken from each class, with 1,000 samples per class/annotation. The second 
dimension represents the window size or the number of data points in single ECG segment. The window size is used 
to break a long signal into smaller segments. The window size used is 400 data points per sample, with 200 data points 
before and after the annotation or class. The third dimension represents the number of channels or leads in the ECG 
signal. The data is then combined and labeled according to each class, allowing the data to be distinguished according 
to its class. From the combined four classes, a total of 4,000 samples is obtained, resulting in a dimension change to 
(4,000, 400, 2), which indicates that the data has 4,000 samples, each sample consisting of 400 data points, with each 
data point having 2 channels (leads). After the data is obtained, it is further pre-processed to adjust the data as a whole. 
 
2.2 Kernel Principal Component Analysis (KPCA)  

KPCA is a feature extraction algorithm that extends the capabilities of traditional PCA. KPCA utilizes kernel 
techniques to reduce the dimensionality of input feature vectors.  Through this approach, KPCA is able to project 
features or data so that the data can be separated linearly [23]. KPCA aims to find a direction called the kernel principal 
component, where classes can be separated optimally. The main goal of KPCA is to extract informative features through 
the dimensionality reduction process [24]. 

Dimensionality reduction plays an important role in handling large-dimensional data effectively. The objectives 
may include noise reduction, preprocessing, or compression. PCA is a mathematical approach that transforms several 
correlated variables into uncorrelated variables, called principal components, which represent the maximum variance 
in the dataset. However, PCA only works for linear structures.  To address this limitation, KPCA was developed as a 
nonlinear extension of standard PCA [25]. Various kernel methods include Linear, Polynomial, Radial Basis Function 
(RBF), Gaussian Kernel, and Sigmoid.  

The research used the RBF or Gaussian kernel method. The RBF kernel is one of the kernel functions that are 
often used in kernel-based methods, such as SVM and KPCA. The RBF kernel measures the similarity between two 
data points by considering their Euclidean distance in feature space. 

 
The Gaussian kernel is defined by Equation 1. 
 

𝐾 (𝑥𝑖, 𝑥𝑗) = exp (−
||𝑥𝑖 − 𝑥𝑗||2

2𝜎2
) (1) 

  
where 𝑥𝑖 and 𝑥𝑗 are data points in the original space, and 𝜎 is the kernel width parameter. 
 
To calculate the kernel matrix 𝐾 for all data pairs, Equation 2 is applied. 
 

𝐾𝑖𝑗 =  𝐾(𝑥𝑖, 𝑥𝑗) (2) 
 

The kernel matrix is centralized by using Equation 3. 
 

𝐾′ =  𝐾 − 1𝐾 − 𝐾1 + 1𝐾1 (3) 
 
where 1 is a matrix with all elements equal to 1/𝑛, and 𝑛 is the number of data points. 
 
To find the eigenvalue (𝜆) and eigenvector (𝑣) of the centered kernel matrix 𝐾′, Equation 4 is applied. 
 

𝐾′𝑣 =  𝜆𝑣 (4) 

 
The data in the new space is calculated by using the eigenvectors of the kernel matrix, as presented in Equation 5. 
 

𝑧𝑖 = ∑ 𝑣𝑗𝐾(𝑥𝑖, 𝑥𝑗)

𝑛

𝑗 =1

 (5) 
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where 𝑧𝑖 is the representation of the data in the new feature space. 
 
 
 
2.3 Naïve Bayes 

Naïve Bayes (NB) is one of the simplest yet most effective probabilistic classification methods. This algorithm is 
widely used in applications ranging from product recommendations to medical diagnostics to autonomous vehicle 
control [26]. The naïve Bayes classifier is governed by Bayes' theorem, which is based on the main idea that all features 
obtained from a dataset are independent of other features [27]. Although the naïve Bayes algorithm is simple, it is very 
effective in many real-world datasets because it can provide better prediction accuracy [28]. 

This method has several types based on data distribution assumptions, namely Gaussian, Multinomial, and 
Bernoulli. Gaussian naïve Bayes (GNB) is a variant of naïve Bayes that assumes that data features are continuous and 
follow a normal (Gaussian) distribution. 

 
To calculate the prior probability for each class 𝐶𝑘, Equation 6 is applied. 
 

𝑃(𝐶𝑘) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑖𝑛 𝑡ℎ𝑒 𝐶𝑘 𝑐𝑙𝑎𝑠𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎
 (6) 

 
For each feature 𝑥𝑖 in class 𝐶𝑘, a probability distribution is calculated by using the Gaussian function, as presented in 
Equation 7. 
 

𝑃(𝑥𝑖|𝐶𝑘) =
1

√2𝜋𝜎𝑘
2

exp (−
(𝑥𝑖 − 𝜇𝑘)2)

2𝜎𝑘
2 ) (7) 

 

where 𝜇𝑘 is the mean, and 𝜎𝑘
2 is the variance of feature 𝑥𝑖 for class 𝐶𝑘. 

 
To calculate the joint probability for all features 𝑥 = [𝑥1, 𝑥2, . . ., 𝑥𝑛], Equation 8 is applied. 
 

𝑃(𝑥|𝐶𝑘) = ∏ 𝑃(𝑥𝑖|𝐶𝑘)

𝑛

𝑖=1

 (8) 

      
Assuming independence between features, Bayes’ Theorem is used to calculate the posterior, as presented in Equation 
9. 
 

𝑃(𝐶𝑘|𝑥) =
𝑃(𝑥|𝐶𝑘) 𝑃(𝐶𝑘) 

𝑃(𝑥)
 (9) 

 
where 𝑃(𝑥) is the normalization, but it does not need to be calculated if it only compares scores between classes. 
 
To determine the class with the highest posterior, Equation 10 is applied. 
 

�̂� = arg max
𝐶𝑘

 𝑃(𝐶𝑘|𝑥) (10) 

 
2.4 Confusion Matrix 

A confusion matrix is a table commonly used to evaluate the performance of classification models in machine 
learning.  It compares the model's predictions with the actual values of the test data [29]. The model performance is 
evaluated using accuracy, specificity, sensitivity, precision, and F1-score. The formulas for calculating the evaluation 
indicators are described in Equations 11, 12, 13, 14, and 15 as follows: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁 

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (11) 

  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 =
𝑇𝑁 

𝑇𝑁 + 𝐹𝑃
 (12) 
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𝑆𝑒𝑛𝑠𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃 

𝑇𝑃 + 𝐹𝑁
 (13) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃 

𝑇𝑃 + 𝐹𝑃
 (14) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 .  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑆𝑒𝑛𝑠𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑣𝑖𝑡𝑦
 (15) 

 
The explanation of each characteristic used in the confusion matrix is as follows: 

• True Positive (TP) is a positive model prediction with a positive actual value. 

• True Negative (TN) is a negative model prediction with a negative actual value. 

• False Positive (FP) is a positive model prediction with a negative actual value. 

• False Negative (FN) is a negative model prediction with a positive actual value [30]. 
 
3. Results and Discussion 
3.1 Data Preprocessing 

ECG data that has been merged and labeled becomes the input for the pre-processing process. The flow of the 
ECG signal pre-processing is shown in Figure 2. 

 

PAC

PAC

PAC

PAC

ECG Signal

Flattening Data Standardization Data Output

 
Figure 2. ECG Signal Pre-processing Flow 

 
Based on Figure 2, this study utilizes ECG data from PCA, PVC, LBBB, and RBBB ECG data, with 1,000 samples 

each.  These datasets are stored in separate files with a (.npy) extension based on their class labels. The ECG signal 
data obtained from this study are shown in Figure 3. 

The data are then combined and labeled according to their respective classes, allowing for distinction between 
the classes. Furthermore, a flattening process is performed to convert the 3D data into a 2D by flattening the second 
and third dimensions into one feature vector per sample. The flattening process enables the data to be further processed 
using techniques such as standardization and dimensionality reduction. The results of flattening the data are shown in 
Figure 4. 

 Once the data is converted into 2D form, it undergoes standardization using the Standard Scaler method. This 
standardization changes the data so that each feature has a mean of 0 and a standard deviation of 1. This process is 
important to ensure that all features have the same scale, which can improve the performance of algorithms that are 
sensitive to the scale of the data. The results of data standardization are shown in Figure 5. 
 

  
(a) (b) 
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(c) (d) 
Figure 3. ECG signals (a) PAC, (b) PVC, (c) RB, and (d) LB 

The x-axis represents the window size or the number of data points in a single ECG segment. The window size 
is used to break down a long signal into smaller segments. In this study, the window size used is 400 data points per 
sample, with 200 data points before and after the annotation or class. 

The y-axis represents the amplitude value of the ECG signal in each channel. Channel 1 and Channel 2 show 
two different channels of ECG signal recording, which can come from different leads. 

 

  
(a) (b) 

  
(c) (d) 

Figure 4. ECG Signal After Flattening (a) PAC, (b) PVC, (c) RB, and (d) LB 
 

After the flattening process, the window size or number of data points changes to 800 points. This change occurs 
because, in the flattening process, the window size and channel are combined into one feature vector per sample with 
amplitude values from both channels. 
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(a) (b) 

  
(c) (d) 

Figure 5. ECG Signals After Standardization (a) PAC, (b) PVC, (c) RB, and (d) LB 
After standardization, the ECG signal amplitude value becomes smoother and shows a standardized scale with 

a mean of 0 and a standard deviation of 1. 
 
3.2 Dimension Reduction 

Dimensionality reduction was performed using KPCA with a Radial Basis Function (RBF) kernel and a gamma 
parameter of 0.01. The stages in KPCA begin with the standardized data, from which a kernel matrix is calculated. The 
kernel matrix is then centralized to make it more symmetric. The centralized kernel matrix is decomposed into 
eigenvalues and eigenvectors, allowing for the identification of the main patterns in the data. Finally, the data is projected 
onto the principal components of the eigendecomposition results. KPCA is used to map the data to a lower-dimensional 
feature space while maintaining the main variance of the original data. The results of dimension reduction with PCA are 
shown in Figure 6. 

 

  
(a) (b) 

  

https://creativecommons.org/licenses/by-nc-sa/4.0/


Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control 
 
 

Cite: M. Melinda, Farhan, M. Irhamsyah, R. Miftahujjannah, D. D Acula, and Y. Yunidar, “Classification of Arrhythmia Electrocardiog ram Signals 
Using Kernel Principal Component Analysis and Naive Bayes ”, KINETIK, vol. 10, no. 3, Aug. 2025. https://doi.org/10.22219/kinetik.v10i3.2219 
 
 

  

  
    

291 

  
(c) (d) 

Figure 6. KPCA Results of ECG Signals (a) PAC, (b) PVC, (c) RB, and (d) LB 
 

The x-axis represents the first dimension of the dimensionality reduction result using KPCA. Principal Component 
1 (PC1) reflects the linear combination of the original features that explains the largest variance in the data after 
nonlinear transformation using the RBF kernel. The y-axis represents the second dimension of the dimensionality 
reduction result. Principal Component 2 (PC2) captures the second-largest variance information not represented by 
PC1. Each blue dot in the figure represents one sample of the data after being reduced to a two-dimensional space. 
The positions of the dots indicate the distribution of the data based on the principal features (PC1 and PC2). 

 
 

3.3 Classification Using Naïve Bayes  
After going through the KPCA process, the data is divided into two parts, namely training data (70%) and testing 

data (30%), which are used as input for the naïve Bayes classifier. The training data is used to train the model using 
NB, while the testing data is used for model validation. The Gaussian naïve Bayes algorithm is trained using the training 
data. The model learns the distribution of each feature and calculates the probability of each class (PAC, PVC, LBBB, 
and RBBB) based on the characteristics of the features. The trained naïve Bayes model then makes predictions on the 
test data, producing class predictions for each sample in the test data, as shown in Figure 7. 

 

  
(a) (b) 
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(c) (d) 

Figure 7. Results of ECG Signal Classification (a) PAC, (b) PVC, (c) RB, and (d) LB 
 

The classification results show that the model is highly accurate and matches the points representing the actual 
class and the predictions. The blue points represent the original data in the 2D space resulting from the KPCA reduction, 
while the orange crosses mark the prediction results of the naïve Bayes model. The classification results show that the 
naïve Bayes model performs well in prediction. The overlap between the predictions and the actual data shows high 
accuracy in each class, indicating that the model is accurate. 

The results of the ECG signal classification were then analyzed using a confusion matrix to measure the overall 
accuracy performance of the model, as well as accuracy per class. Several parameters, namely accuracy, specificity, 
sensitivity, precision, and F1-score, can be calculated as in Equations 11, 12, 13, 14, and 15. The model shows high 
accuracy, with the majority of predictions falling into the correct categories. The classification error is relatively low, 
indicating that the naïve Bayes model combined with KPCA can effectively capture the main characteristics of each 
type of ECG signal. The confusion matrix results of this model are shown in Figure 8, and the performance evaluation 
metrics for each class are shown in Table 2.   

Based on the results, the ECG signal classification model using KPCA and naïve Bayes was successfully 
implemented with an overall accuracy of 97.67%. This indicates that classifying arrhythmia ECG signal data using the 
KPCA and naïve Bayes method achieves a higher accuracy than previous research using the CWT and LSTM methods, 
which reported an accuracy of only 94,42% [31]. Similarly, an earlier study employing the principal component analysis 
(PCA) technique achieved an accuracy of merely 93.5% [31]. 

 

https://creativecommons.org/licenses/by-nc-sa/4.0/


Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control 
 
 

Cite: M. Melinda, Farhan, M. Irhamsyah, R. Miftahujjannah, D. D Acula, and Y. Yunidar, “Classification of Arrhythmia Electrocardiog ram Signals 
Using Kernel Principal Component Analysis and Naive Bayes ”, KINETIK, vol. 10, no. 3, Aug. 2025. https://doi.org/10.22219/kinetik.v10i3.2219 
 
 

  

  
    

293 

 
Figure 8. Confusion Matrix Results 

 
Table 2. Model Performance Evaluation Metrics Per Class 

No Class Accuracy Sensitivity Specificity Precision F1-Score 

1 PAC 98.67 % 99.05 % 98.53 % 96.00 % 97.50 % 
2 PVC 98.25 % 97.72 % 98.43 % 95.54 % 96.62 % 
3 LB 99.08 % 96.60 % 99.89 % 99.65 % 98.10 % 
4 RB 99.33 % 97.18 % 100 % 100 % 98.57 % 

 
Based on Table 2, the performance evaluation of the ECG arrhythmia classification model is derived from several 

metrics, namely accuracy, sensitivity, specificity, precision, and F1-score for each arrhythmia class. For the PAC 
(Premature Atrial Contraction) class, the model shows an accuracy of 98.67%, with a sensitivity of 99.05% and a 
specificity of 98.53%. The model precision for this class was 96.00%, and the F1-score reached 97.50%, indicating 
excellent performance in detecting this arrhythmia. Furthermore, the PVC (Premature Ventricular Contraction) class 
had an accuracy of 98.25%, sensitivity of 97.72%, and specificity of 98.43%, with a precision of 95.54% and F1-score 
of 96.62%, indicating the effectiveness of the model in identifying PVC. The LB (Left Bundle Branch Block) class showed 
the best performance with 99.08% accuracy, 96.60% sensitivity, and a very high specificity at 99.89%. The precision 
for the LB classification reached 99.65%, and the F1-score was 98.10%, indicating the model was very effective in 
detecting this condition. Finally, the RB (Right Bundle Branch Block) class recorded the highest accuracy among all 
classes at 99.33%, with a sensitivity of 97.18% and perfect specificity at 100%. With a precision of 100% and an F1-
score of 98.57%, the model showed optimal performance in RB classification. Overall, the classification model showed 
excellent results in detecting different types of arrhythmias.  The metrics indicate high accuracy and low error rates, 
suggesting the model’s strong capability to identify ECG abnormalities.  

Further examination of the efficacy of each classification category is highly recommended, especially to 
understand the reason behind the RB class, which showed the highest accuracy rate of 99.33%. The high accuracy in 
this class may be attributed to the clearer and well-defined features in the ECG signals, as well as the lack of variability 
affecting pattern recognition. In contrast, the PVC class showed a greater frequency of inaccuracies, which may be due 
to higher signal complexity or overlap with other classes, making it difficult for the model to distinguish between different 
arrhythmias. In addition, exploration of the limitations inherent in this methodology is also very important. For example, 
the independence assumption used in the naïve Bayes algorithm can be a limiting factor, especially if there is a 
significant correlation between features. Moreover, the use of limited datasets, such as the MIT-BIH Arrhythmia 
Database, may affect the generalizability of the model and result in bias in classification. By including an analysis of 
these limitations, this study can provide a more impartial viewpoint and assist other researchers in understanding the 
challenges faced in ECG arrhythmia classification. It may also trigger the development of more robust methods in the 
future.  
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In this study, we implemented an arrhythmia classification method using a combination of Kernel Principal 
Component Analysis (KPCA) and naïve Bayes on electrocardiogram (ECG) signals. The results obtained showed a 
classification accuracy of 92%, which indicates a significant improvement compared to existing approaches. In the 
statistical analysis, we used an independent t-test to compare the accuracy of our model with previous studies. The 
results showed that the difference in accuracy between this study and the previous study [32], which had an accuracy 
of 85%, was significant (p < 0.05). This implies that our approach is proven to be superior in terms of effectiveness. Our 
findings also showed that noise reduction applied to the signal before feature extraction contributed significantly to the 
improvement in accuracy. The noise filtering method applied before feature extraction also contributed to this accuracy 
improvement. By removing artifacts from the ECG signal, our model can be more efficient in recognizing patterns related 
to arrhythmia. After applying the filtering method, the average accuracy increase was 5% compared to the unfiltered 
data. Overall, the results of this study not only demonstrate the effectiveness of the proposed method but also prove a 
significant contribution to the development of a more accurate machine learning-based arrhythmia detection system. 
With the increasing prevalence of arrhythmia, this study is highly relevant in efforts to improve early diagnosis and 
technology-based treatment in the field of heart health. 

A comparison of various studies related to this study, each using different models and techniques, is based on 
findings in [33]. In this research work, two novel ensemble methods of Extreme Gradient Boosting-LSTM (EXGB-LSTM) 
were developed. Experimental results showed that the first method, fusion of EXG-LSTM, achieved an accuracy of 
92.1%. In [34], a method based on a neural network was proposed and optimized using Random Search optimization. 
Eventually, this proposed method gained the top position in all data balancing compared to other machine learning 
algorithms, with 91.7 % for both accuracy and Area Under Curve, with a score of 91.6 %. Based on several comparisons 
in previous studies, the accuracy of the Kernel Principal Component Analysis and naïve Bayes methods in predicting 
stress in final-year students is very high, at 94%. This indicates that this study is very good compared to previous studies 
due to its high accuracy level. 

 
4. Conclusion 

The ECG signal classification model using KPCA and naïve Bayes was successfully performed with an overall 
accuracy of 97.67%, showing excellent performance in classifying ECG signals from various types of arrhythmias. The 
error rate was relatively low, with most predictions being correct. The RB class performed the best, with an accuracy of 
99.33%, a specificity of 100%, and a precision of 100%. Notably, there were no errors in identifying the non-RBBB 
class, indicating a perfect detection rate. The LB class had an accuracy of 99.08% with a specificity of 99.89% and a 
precision of 99.65%. Although the sensitivity was slightly lower at 96.60%, the overall performance was nearly perfect. 
The PVC class showed a higher number of prediction errors than the other classes, which were mainly misclassified as 
LBBB. However, the accuracy remained high at 98.25%, with an F1-score of 96.62%. The PAC class had the highest 
sensitivity of 99.05%, indicating the model's ability to detect almost all PAC data correctly. However, the precision of 
96.00% indicates some prediction errors in predicting PAC among other classes. Future work on this study can focus 
on several key areas to further improve the ECG arrhythmia classification model. First, it is important to test the model 
on larger and more diverse datasets, including data from various populations and clinical conditions, to assess the 
generalizability and robustness of the model. In addition, the integration of the model into a real-time ECG monitoring 
system could provide significant benefits, enabling immediate arrhythmia detection and alerting medical personnel.  
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