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This study aimed to enhance the object recognition capabilities of autonomous 
vehicles in constrained and dynamic environments. By integrating Light 
Detection and Ranging (LiDAR) technology with a modified Voxel-RCNN 
framework, the system detected and classified six object classes: human, wall, 
car, cyclist, tree, and cart. This integration improved the safety and reliability of 
autonomous navigation. The methodology included the preparation of a point 
cloud dataset, conversion into the KITTI format for compatibility with the Voxel-
RCNN pipeline, and comprehensive model training. The framework was 
evaluated using metrics such as precision, recall, F1-score, and mean average 
precision (mAP). Modifications to the Voxel-RCNN framework were introduced 
to improve classification accuracy, addressing challenges encountered in 
complex navigation scenarios. Experimental results demonstrated the 
robustness of the proposed modifications. Modification 2 consistently 
outperformed the baseline, with 3D detection scores for the car class in hard 
scenarios increasing from 4.39 to 10.31. Modification 3 achieved the lowest 
training loss of 1.68 after 600 epochs, indicating significant improvements in 
model optimization. However, variability in the real-world performance of 
Modification 3 highlighted the need for balancing optimized training with 
practical applicability. Overall, the study found that the training loss decreased 
up to 29.1% and achieved substantial improvements in detection accuracy 
under challenging conditions. These findings underscored the potential of the 
proposed system to advance the safety and intelligence of autonomous 
vehicles, providing a solid foundation for future research in autonomous 
navigation and object recognition. 

 
1. Introduction 

The rapid advancement of autonomous vehicle technology has transformed various industries, including logistics, 
agriculture, and warehousing, where autonomous systems are increasingly employed in dynamic yet confined 
environments [1][2][3][4][5]. A critical component of autonomous systems is their ability to detect and recognize objects 
within their surroundings accurately [6]. Object recognition not only enhances situational awareness but also plays a 
pivotal role in enabling autonomous vehicles to anticipate the behavior of objects, make informed decisions, and avoid 
potential collisions. This capability is vital for ensuring the safety and reliability of autonomous navigation systems, 
particularly in restricted and cluttered environments where operational parameters are highly constrained [7][8]. 

Despite significant progress in object detection technologies, many existing methods primarily focus on object 
detection without delving into advanced object recognition. This limitation reduces the autonomous system's ability to 
interpret the intent or movement patterns of objects, potentially leading to unsafe interactions [9]. The challenge 
becomes more pronounced in confined spaces where autonomous vehicles must maneuver carefully and predict object 
behavior accurately. Traditional approaches, which often rely on 2D image-based sensors or basic LiDAR 
implementations, fall short in providing the nuanced recognition needed for complex, real-world scenarios. Addressing 
this gap is crucial to advancing autonomous vehicle technologies, particularly for applications that demand both 
precision and adaptability in object recognition [10][11]. 

This research proposes a novel approach to enhance autonomous vehicle navigation through an innovative 
application of Light Detection and Ranging (LiDAR) technology combined with a modified Voxel-RCNN framework [12]. 
LiDAR technology offers high-resolution point cloud data that is instrumental in detecting and recognizing objects in 3D 
space. The proposed method aims to transform raw LiDAR data into actionable insights by classifying objects with high 
accuracy across six predefined object classes. Enhancements to the Voxel-RCNN model are introduced to improve 
classification performance, addressing the shortcomings of traditional methods. By benchmarking this approach against 
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existing methodologies, the study seeks to demonstrate not only the effectiveness but also the novelty of the proposed 
solution, ultimately contributing to safer and more intelligent autonomous vehicle systems in restricted environments. 

Through this study, a significant contribution to the field of autonomous navigation is anticipated by bridging the 
gap between basic object detection and advanced object recognition. The findings could potentially set a new 
benchmark for safety and efficiency in environments where autonomous vehicles operate, offering a robust solution to 
current industry challenges.  

 
2. Research Method 

This section presents a structured and systematic approach to developing a robust 3D object detection system 
by leveraging the Voxel-RCNN architecture, which is well-suited for processing three-dimensional spatial data. The 
pipeline spans several interconnected stages, from raw data preparation to advanced visualization techniques, ensuring 
accuracy, scalability, and applicability to real-world scenarios.  

The process begins with dataset creation, where raw point cloud data is collected, preprocessed, labeled into six 
classification categories, and converted into KITTI format (.pkl) for compatibility with the Voxel-RCNN model. The 
dataset is then divided into three subsets: training, validation, and testing. The training dataset is used to develop the 
Voxel-RCNN model through an optimization process that minimizes the loss function, while validation data is utilized 
during training to ensure accuracy and prevent overfitting. Finally, the testing dataset is reserved for evaluating the 
model's performance on unseen data. The evaluation process involves performance metrics such as Bird’s Eye View 
(BEV) and 3D visualization, providing a comprehensive assessment of the trained model. Figure 1 illustrates the 
complete workflow of the 3D object detection system, highlighting each stage from dataset preprocessing to model 
evaluation. 

 

 
Figure 1. Process Architecture 

 
2.1 Dataset Creation and Preprocessing 

The process begins with the creation of a dataset in Point Cloud Data (PCD) format [13]. PCD is a commonly 
used file format for representing three-dimensional spatial information, where each point is defined by its (x,y,z)(x, y, 
z)(x,y,z) coordinates, along with optional attributes such as intensity or reflectance [14]. For instance, a LiDAR sensor 
generates point clouds that capture an object’s physical dimensions and spatial location in a scene [15]. Suppose the 
dataset comprises N point clouds, each containing Mi points (where i = 1, 2, ………., N), the total number of points in 
the dataset is computed in Equation 1.   
 

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑖𝑛𝑡𝑠 = ∑ M𝑖

𝑁

𝑖=1

 (1) 
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These raw point clouds are processed and labeled into six predefined object categories, such as vehicles, 
pedestrians, cyclists, and background [16]. Labeling assigns a unique class CCC to each point, forming the ground truth 
for training [17]. This classification step ensures that the model learns to distinguish between different object classes 
effectively. 

 
2.2 Dataset Conversion to KITTI Format 

After labeling, the dataset undergoes conversion into KITTI format, a widely accepted standard for benchmarking 
3D object detection models [18]. KITTI format comprises structured files containing both 3D point clouds and their 
corresponding annotations [19]. Each object is represented by a bounding box, defined by its spatial extents (xmin, 
ymin, zmin, xmax, ymax, zMax) These bounding boxes encapsulate the dimensions and positions of objects, enabling 
the model to learn object localization in three-dimensional space. The conversion also involves serializing the data into 
compact .pkl files for efficient storage and loading. The memory requirement for annotations can be estimated in 
Equation 2. 
 

𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑆𝑖𝑧𝑒 (𝑏𝑦𝑡𝑒𝑠) = 𝐾 × 6 × 𝑠𝑖𝑧𝑒𝑜𝑓(𝑓𝑙𝑜𝑎𝑡) (2) 
 

Where K is the total number of bounding boxes, and sizeof(float) (typically 4 bytes) represents the memory 
allocated to store each coordinate. 

 
2.3 Dataset Splitting for Validation and Testing 

To train and evaluate the model, a dataset comprising a total of 2,467 samples was utilized [20]. This dataset 
was carefully collected in a controlled environment within the National Research and Innovation Agency (BRIN), 
specifically at the Samaun Samadikun area in Bandung. The controlled setting ensures high-quality data with consistent 
environmental parameters, making it a reliable foundation for developing and testing object detection systems. 

The dataset is divided into three subsets: training, validation, and testing, ensuring a robust evaluation framework. 
Specifically, the training dataset consists of 1,904 samples, accounting for approximately 77% of the total data. These 
samples are utilized to optimize the model parameters, allowing it to effectively learn and generalize patterns in the 
data. The validation dataset includes 368 samples, representing approximately 15% of the total data. These samples 
serve to fine-tune hyperparameters and monitor the model's performance during training, thereby preventing overfitting. 
Finally, the testing dataset comprises 195 samples, equivalent to 8% of the total data. These are reserved exclusively 
for evaluating the model's performance and generalization capabilities after training [21]. 

This division follows a well-balanced ratio, ensuring sufficient data for training while retaining adequate samples 
for validation and testing. The consistent sampling method further enhances the dataset's reliability, particularly given 
its origin in a controlled BRIN environment. During validation and testing, the Intersection over Union (IoU) metric is 
employed to quantify the alignment between predicted and ground truth bounding boxes [22]. IoU is defined 
mathematically in Equation 3. 
 

𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑈𝑛𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑂𝑣𝑒𝑟𝑙𝑎𝑝
 (3) 

 
A higher IoU indicates better alignment, and thresholds (e.g., IoU ≥ 0.5) are used to classify detections as true 

positives or false positives. 
 
2.4 Model Development Using Voxel-RCNN 

The Voxel-RCNN model serves as the core of this workflow. Voxelization is the initial step in processing point 
clouds, dividing the 3D space into a uniform grid of small cubes called voxels [23]. Each voxel aggregates features from 
the points within it, simplifying processing through neural networks [24]. The number of voxels in each dimension is 
determined by the voxel size and spatial range in Equation 4. 
 

𝑵𝒙 = ⌈
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

𝑠
⌉ , 𝑵𝒚 = ⌈

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

𝑠
⌉  ,     𝑵𝒛 = ⌈

𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛

𝑠
⌉ (4) 

 
The voxelized data is then fed into the Voxel-RCNN network, which extracts features using convolutional layers 

and predicts bounding boxes and object classes with high accuracy. 
 
2.5 Model Training 

The training process aims to minimize a loss function that combines classification and regression components. 
The classification loss (e.g., cross-entropy) evaluates how well the model predicts object classes, while the regression 
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loss (e.g., Smooth L1 Loss) measures the accuracy of predicted bounding box coordinates. The total loss function is 
formulated in Equation 5. 
 

𝑳𝒕𝒐𝒕𝒂𝒍 = 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝜆 ⋅ 𝐿𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (5) 
 

Here, λ is a hyperparameter balancing the two components [25]. Model parameters are iteratively optimized using 
algorithms such as Stochastic Gradient Descent (SGD) or Adam. 

 
2.6 Model Testing and Performance Evaluation 

After training, the model is tested on the testing dataset to assess its generalization performance [26]. Key 
evaluation metrics include: 

Precision: The proportion of correctly predicted objects among all predictions in Equation 6. 
 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (6) 

 
Recall: The proportion of correctly predicted objects among all ground truth objects in Equation 7. 
 

𝑹𝒆𝒄𝒂𝒍𝒍 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (7) 

 
F1-Score: The harmonic mean of Precision and Recall in Equation 8. 
 

𝑭𝟏 = 2 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙
 (8) 

 
Mean Average Precision (mAP) [27]: The average precision across all object classes and IoU thresholds, 

providing an overall performance metric in Equation 9. 
 

𝒎𝑨𝑷 =
1

𝑛
∑ APi

𝑛

𝑖=0

 (9) 

 
2.7 Visualization in BEV and 3D 

The final stage involves visualizing model predictions in Bird’s Eye View (BEV) and 3D space. BEV projects the 
3D point cloud onto a 2D plane, providing a top-down perspective that is particularly useful in applications like 
autonomous driving, where spatial awareness is critical. Conversely, 3D visualization overlays predicted bounding 
boxes onto the original point cloud, enabling qualitative evaluation of prediction accuracy and alignment. The 
computational complexity of visualization depends on the resolution of the point cloud and the number of detected 
objects. Effective visualization enhances interpretability and identifies areas for model improvement. 

 
3. Results and Discussion 

Voxel-RCNN is a widely used model for 3D object detection, and modifications to its architecture and 
hyperparameters can significantly influence the performance. This study evaluates three modifications applied to the 
Voxel-RCNN model using a custom LiDAR dataset. The analysis considers the loss trends, BEV (Bird’s Eye View) 
accuracy, and 3D detection accuracy under different difficulty levels (Easy, Moderate, Hard). The discussion also 
includes comparisons with prior research to highlight improvements and contributions to LiDAR-based object 
recognition. Compared to previous studies that focus primarily on structured environments, this research investigates 
the model’s adaptability to more complex real-world LiDAR datasets. 
 
3.1 Training Loss Analysis 

The loss graphs indicate the stability and convergence rate of each model variation. The default model exhibits 
relatively stable loss reduction, whereas Modifications 1 and 2 show slight fluctuations, suggesting sensitivity to 
architectural or hyperparameter changes. Modification 3 achieves a smoother convergence, indicating improved model 
stability. However, the final loss values remain similar across modifications, implying that improvements in detection 
performance might arise from other factors, such as feature extraction efficiency. This trend is clearly illustrated in Figure 
2, which presents the loss graph for each model variation throughout the training process. 
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Figure 2. Loss Graph 

 
3.2 Detection Metrics Evaluation 

The evaluation of Bird’s Eye View (BEV) and 3D object detection metrics focused on six object classes Human, 
Wall, Car, Cyclist, Tree, and Cart under three levels of difficulty: Easy, Moderate, and Hard. The findings are 
summarized below in Table 1, Table 2, Table 3, and Table 4. 
 

Table 1. Evaluation Metrics BEV and 3D Model Default (Custom Dataset) 

Clasification 
BEV 3D 

Easy Moderate Hard Easy Moderate Hard 

Human 54,3302 29,5195 6,2965 50,783 11,3822 4,5455 

Wall 26,5057 14,9042 3,917 20,2877 11,4263 3,0303 

Car 68,1377 57,7764 32,2209 55,834 36,4733 4,3867 

Cyclist 31,7906 23,127 10,1849 22,2535 10,3853 9,0909 

Tree 21,1267 10,2238 1,5579 14,8123 6,2982 0,1535 

Cart 36,1061 29,6834 5,0671 31,2497 7,7124 1,0101 

 
Table 2. Evaluation Metrics BEV and 3D Modification 1 (Custom Dataset) 

Clasification 
BEV 3D 

Easy Moderate Hard Easy Moderate Hard 

Human 52,5102 24,1813 2,9589 42,3793 8,4948 1,2987 

Wall 20,0590 10,4190 2,9131 17,7451 5,7487 2,2062 

Car 70,6275 60,7917 37,3534 59,3902 35,7529 4,7910 

Cyclist 27,9477 23,0143 10,7455 18,5866 10,6727 9,0909 

Tree 20,7057 9,8964 1,1453 14,9544 4,4833 0,3636 

Cart 32,6655 30,0914 11,3268 32,0197 17,1054 1,5152 

 
Table 3. Evaluation Metrics BEV and 3D Modification 2 (Custom Dataset) 

Clasification 
BEV 3D 

Easy Moderate Hard Easy Moderate Hard 

Human 51,2788 28,6414 3,8841 47,6951 15,9204 2,2727 

Wall 24,8640 11,8884 3,9601 17,4174 9,1753 3,0303 

Car 69,7595 58,6979 37,1323 56,3269 35,5246 10,3147 

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

0 100 200 300 400 500 600 700

Tr
ai

n
 L

o
ss

Epoch

Loss Graph

Default Modification 1 Modification 2 Modification 3

https://doi.org/10.22219/kinetik.v10i2.2199


Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control 
 

© 2025 The Authors. Published by Universitas Muhammadiyah Malang 
This is an open access article under the CC BY NC SA license (https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

 

 

                    

 

258 

Cyclist 35,4734 21,0508 9,9243 24,4987 10,1612 9,0909 

Tree 26,0298 15,3060 2,2727 19,7907 11,3935 0,2045 

Cart 29,8904 28,4611 5,9867 29,0122 8,0001 2,5735 

 
Table 4. Evaluation Metrics BEV and 3D Modification 3 (Custom Dataset) 

Clasification 
BEV 3D 

Easy Moderate Hard Easy Moderate Hard 

Human 55,2619 25,8747 6,1640 51,1075 10,5138 4,5455 

Wall 23,0354 10,9941 4,2712 16,6164 7,5547 2,2727 

Car 67,8333 56,0881 35,5241 51,7047 31,8638 3,7728 

Cyclist 31,6481 21,8701 4,2546 22,0561 5,7668 3,0303 

Tree 25,5878 14,8133 1,0101 19,4566 10,7731 1,0100 

Cart 29,3512 27,5013 4,6807 28,7830 7,9860 0,8686 

 
Human: The default model achieves BEV scores of (54.33, 29.52, 6.30) and 3D scores of (50.78, 11.38, 4.54). 

Modification 3 slightly enhances 3D accuracy (51.10, 10.51, 4.54), while Modifications 1 and 2 show performance 
declines. The results suggest that modifications do not significantly enhance human detection compared to the default 
model. 

Wall: The default model performs poorly in detecting walls, with BEV scores of (26.50, 14.90, 3.91) and 3D scores 
of (20.28, 11.42, 3.03). Modification 2 offers slight improvements, while Modification 1 performs the worst. The results 
indicate that modifications do not drastically improve wall detection, likely due to the planar nature of wall structures in 
point cloud data. 

Car: The default model achieves BEV scores of (68.14, 57.77, 32.22) and 3D scores of (55.83, 36.47, 4.38). 
Modification 2 enhances 3D accuracy in hard conditions (10.31%), demonstrating better adaptability in complex driving 
scenarios. 

Cyclist: The default model achieves moderate performance, with BEV scores of (31.79, 23.12, 10.18) and 3D 
scores of (22.25, 10.38, 9.09). Modification 3 introduces a significant performance drop, suggesting that modifications 
might have inadvertently reduced feature discrimination for small and narrow objects. 

Tree: The default model achieves low accuracy, with BEV scores of (21.12, 10.22, 1.55) and 3D scores of (14.81, 
6.29, 0.15). Modification 2 shows slight improvements in 3D accuracy (19.79, 11.39, 0.20), suggesting better 
adaptability to irregularly shaped tree structures. 

Cart: The default model achieves BEV scores of (36.10, 29.68, 5.06) and 3D scores of (31.24, 7.71, 1.01). 
Modification 1 enhances BEV accuracy, while Modification 2 slightly improves 3D detection. 

Overall, while modifications provide minor improvements for certain object classes, the default model remains 
competitive, particularly in car and cyclist detection. Modifications mainly enhance performance in complex scenarios 
but require further tuning to ensure consistent accuracy gains across all object types. 

 
3.3 Comparison with Previous Research 

Prior research on LiDAR-based object recognition has focused predominantly on vehicle detection in structured 
environments, such as highways and urban roads. The default model, trained on the KITTI dataset, achieves superior 
car detection but struggles with other object classes. This study extends prior work by optimizing Voxel-RCNN for a 
more diverse dataset that includes infrastructure elements and smaller objects. Compared to previous works that 
employ highly curated datasets, this study evaluates model performance under more challenging real-world conditions, 
providing insights into robustness and generalizability. The performance of the default model on the KITTI dataset is 
summarized in Table 5, showcasing its strengths and limitations in a controlled environment. 

The primary contribution of this research lies in its comparative analysis of different Voxel-RCNN modifications 
tailored for real-world applications. Unlike previous studies that primarily fine-tune models for specific datasets, this 
study explores architectural modifications to improve detection across varied object types. The findings highlight the 
importance of dataset adaptability and modifications that balance performance across all object categories rather than 
prioritizing single-class optimization. Table 6 presents the evaluation metrics of the default model applied to the custom 
dataset, offering a baseline for assessing the impact of the proposed modifications. 
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Table 5. Evaluation Metrics BEV and 3D Voxel RCNN Model Default (Kitti Dataset)[12] 

Clasification 
BEV 3D 

Easy Moderate Hard Easy Moderate Hard 

Car 95.52 91.25 88.99 92.38 85.29 82.86 

 
Table 6. Evaluation Metrics BEV and 3D model Default (Custom Dataset) 

Clasification 
BEV 3D 

Easy Moderate Hard Easy Moderate Hard 

Human 54,3302 29,5195 6,2965 50,783 11,3822 4,5455 

Wall 26,5057 14,9042 3,917 20,2877 11,4263 3,0303 

Car 68,1377 57,7764 32,2209 55,834 36,4733 4,3867 

Cyclist 31,7906 23,127 10,1849 22,2535 10,3853 9,0909 

Tree 21,1267 10,2238 1,5579 14,8123 6,2982 0,1535 

Cart 36,1061 29,6834 5,0671 31,2497 7,7124 1,0101 

 
3.4 LiDAR-based Object Recognition and Scenario Analysis 

LiDAR technology is essential for 3D object recognition, particularly in autonomous navigation and smart 
infrastructure applications. This study evaluates the influence of LiDAR penetration, point density, and occlusions on 
detection accuracy. Experimental scenarios include varying distances, occlusion levels, and object orientations to 
analyze detection robustness under real-world conditions. 

The findings emphasize the importance of LiDAR feature extraction techniques to maintain detection consistency 
across different object categories. While the default Voxel-RCNN model performs well in structured settings, 
modifications enhance detection under more complex scenarios by improving feature encoding for occluded and 
irregularly shaped objects. 
 
4. Conclusion 

Considering both BEV and 3D results, Modification 2 emerges as the most balanced model, improving 3D 
detection in complex scenarios while maintaining BEV accuracy. Modification 1 shows inconsistent improvements, 
whereas Modification 3 demonstrates stability in BEV but suffers from 3D detection losses. The default model remains 
a strong baseline, but the modifications provide valuable insights into tuning detection performance for specific object 
classes. 

This study highlights the trade-offs associated with different modifications to Voxel-RCNN. Modification 2 
presents the best overall performance, especially in 3D object detection, while Modification 3 provides stability in BEV 
performance. Future work should focus on hybrid approaches that leverage the strengths of each modification while 
mitigating their respective weaknesses. Additional validation using real-world data and simulation environments will be 
crucial for further model improvements. 
 
Notation 
x   = Global vechile x-position 
y   = Global vechile y-position 
z   = Global vechile z-position 
N   = horizon Valeu 
K   = total number of bounding box  
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