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Causal graph discovery approaches in healthcare for detecting high-risk 
diseases have been more widely applied in the last decade. The main 
challenge in causal graph discovery in healthcare data is the complexity of big 
data, which requires appropriate algorithms to reveal causal relationships 
between variables. This study focuses on evaluating the performance of seven 
causal discovery models—Peter-Clark (PC), Greedy Equivalent Search (GES), 
Direct LiNGAM, Directed Acyclic Graph-Graph Neural Network (DAG-GNN), 
Greedy Sparsest Permutation (GraSP), and Recursive Causal Discovery 
(RCD)—on opensource healthcare datasets. The model performance was 
evaluated using the Structural Intervention Distance (SID), Structural Hamming 
Distance (SHD), Matthews Correlation Coefficient (MCC), and Fobernius Norm 
(FN) metrics. The evaluation results conclusively show that the GES model 
performs best on low-complexity datasets. Meanwhile, the DAG-GNN model 
offers consistent performance on high-complexity data with MCC values 
ranging from 0.77 to 0.88. The application of the GES model for lung cancer 
risk screening, based on user question responses, demonstrated effectiveness 
by measuring MCC, SID, and SHD scores between the reference adjacency 
metrics and the resulting screening metrics. 

 
1. Introduction 

Lung cancer detection has gained significant attention in recent years, particularly with the emergence of 
machine-learning techniques that improve early diagnosis capabilities and intervention strategies. Early detection is 
critical as lung cancer is the leading cause of death in cancer cases worldwide. Various studies have explored applying 
different machine learning models for lung cancer detection, emphasizing the importance of comparative analysis 
among these methods to identify the most effective approach. A comprehensive review of several studies on using 
machine learning algorithms in lung cancer prediction emphasizes the need for diagnosis for early treatment intervention 
to increase the probability of patient cure [1]. This review serves as an essential reference for understanding the 
application landscape of ML in lung cancer detection. Another study showed that comparing various ML algorithms, 
including decision tree and ensemble methods, demonstrated accuracy in detecting lung cancer [2]. These results show 
that different algorithms produce different levels of accuracy.   

Utilizing causal discovery algorithms in healthcare has shown significant advantages over traditional machine 
learning methods. The main reason is the ability of causal discovery algorithms to identify causal relationships more 
accurately, which is often disregarded by machine learning models that are more correlation-based. Understanding 
causality is crucial in interpreting medical results, especially in revealing the risk of disease, where misinterpretation 
can have serious consequences [3]. According to this study, whereas machine learning methods can provide reliable 
predictions, they are frequently faced with problems of measurement bias and selection of factors that might influence 
the results [4]. 

Causal discovery methods have performed significant results in identifying causal relationships in the healthcare 
domain. Several studies addressed causal discovery techniques, which can analyze observed data to discover cause-
and-effect relationships among observed variables. This approach can enhance data interpretability and the 
development of more accurate predictive models [5]. Implementing causal models, such as the PC (Peter-Clark) and 
GES (Greedy Equivalence Search) algorithms, enables the construction of causal graphs that can explain the 
relationship between risk factors in the lung cancer detection domain. However, applying these causal models in lung 
cancer detection requires further investigation and validation [6]. In addition to these approaches, several lung cancer 
risk prediction methods utilize feature selection to simplify the input variables, thereby improving the accuracy and 
applicability of the model in health monitoring [7]. 

Early intervention in lung cancer can be significantly improved by developing a risk screening tool and 
implementing causal discovery algorithms. Developing these tools requires determining the right causal discovery 
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model for performance and capability to handle high-complexity data. The consideration of the causal inference 
algorithm is essential to achieve a high-performance candidate model in the healthcare domain. The comparative 
analysis of these causal discovery algorithms would assist not only in identifying the most effective models but also in 
enhancing the understanding of the various causal and risk factors of lung cancer that are quantifiable numerically. 

Condition-based methods employ a probability approach to discover causal relationships. By quantifying the 
mutual information between variables, this method enables the determination of causal relations based on the 
probability scores [9]. The basic concept in the context of applying this method is the transfer entropy [10]. Condition-
based methods are divided into two sub-methods: constraint-based and score-based. Constraint-based causal 
discovery algorithms are Peter-Clark (PC) and MVPC (Missing value peter-clark). Meanwhile, algorithms with score-
based methods include GraSP and GES. The basic formula of the PC algorithm is based on the conditional 
independence test between pairs of variables. 

The modeling-based methods of discovering causality use a structural equation modeling (SEM) approach. The 
SEM technique integrates causal factor analysis and regression in one single analysis. Model analysis involves 
observed and latent variables to determine the causal relationship between variables in the graph structure [11]. Some 
algorithms involved in this method are Direct LiNGAM and RCD (Recursive Causal Discovery). 

Deep learning-based methods discover causal relationships through deep learning techniques to automatically 
analyze large-scale data and detect the hidden variables that affect causal relationships. DAG-GNN is one of the deep 
learning-based methods; this algorithm combines Graph Neural Networks with a score-based approach to obtain 
directed acyclic graphs from observational data, then utilizes GNN for node embeddings and defines scores to evaluate 
causal structures [12].  

This research contributes to the field of causal discovery in healthcare by systematically evaluating multiple 
causal discovery algorithms for lung cancer risk screening. While previous studies primarily focused on machine 
learning models that emphasize predictive accuracy, this study addresses a critical gap by analyzing the causal 
relationships between risk factors, enabling more interpretable and actionable insights. The key contribution of this 
study lies in the comparative assessment of seven causal discovery models such as PC, MVPC, GES, GraSP, Direct 
LiNGAM, DAG-GNN, and RCD across various complexity levels of medical datasets.  

Furthermore, the objective of this research is not only to develop a lung cancer risk screening tool but also to 
enhance understanding of causal inference methodologies in the healthcare domain. By integrating causal discovery 
with a structured evaluation framework, this study provides healthcare practitioners with a scientifically grounded 
approach to identifying high-risk individuals based on causal relationships rather than mere correlations.  

 

1.1 Greedy Equivalent Search (GES) 
Greedy Equivalent Search (GES) is a standard algorithm used to study the structure of Bayesian networks. The 

GES algorithm is implemented by identifying a fitting model to describe the dependencies between variables. The basic 
principle of GES is to optimize the causality scoring function using the Bayesian Information Criterion (BIC) score 
[13][14]. This method generates a graph structure and then iteratively eliminates edges based on statistical validation 
[15]. This method is particularly effective in scenarios where the causal relationships between variables are complex. 
In several studies, a comparison of the GES algorithm was demonstrated to perform well in the context of graph 
accuracy when compared to other causal discovery algorithms [16]. The GES algorithm considers changes in the graph 
to maximize the likelihood or fitness of the model. In Equation 1, X and Y are the variables under test, while Z is the set 
of conditions of a variable, if X and Y are not conditionally independent of Z, then the edge is added or changed in the 
graph. 
 

(𝑎𝑑𝑑|𝑟𝑒𝑚𝑜𝑣𝑒)𝑒𝑑𝑔𝑒 𝑖𝑓 𝑋 ⊥ 𝑌 | 𝑍 (1) 
 
Description: 
X, Y = Variable under test 
Z = Set of conditions 
 
1.2 The Peter-Clark (PC) 

The Peter-Clark (PC) algorithm is one of the algorithms in causality discovery designed to identify cause-and-
effect relationships from observational data. It is a graph-based algorithm that utilizes variable independence to 
generate causal structures. The PC algorithm is implemented by examining the conditional independence between 
variables to determine causal relationships in the data [17][18]. The generation of the causality graph in the PC algorithm 
is initiated by revealing the network between variables and then determining the direction of the edge to the node 
through statistical variable independence testing [19]. In some studies, the PC algorithm can handle high-dimensional 
data [20]. The conditional independence relationship between two variables X and Y given a set of other variables Z is 
mathematically represented as Equation 2. 
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𝑋 ⊥ 𝑌 | 𝑍 (2) 
 
1.3 Missing Value Peter-Clark (MVPC) 

The Missing Value PC (MVPC) algorithm is a method designed to solve the problem of revealing causality when 
datasets have missing values. MVPC is the latest development of the PC algorithm by integrating additional corrections 
to handle various missing data mechanisms consisting of missing completely at random (MCAR), missing at random 
(MAR), and missing not at random (MNAR) [21]. In this context, MVPC contributes to restoring causal structure to 
unobserved variables [22][21]. These modifications enable MVPC to perform better with data limitations than the original 
PC algorithm [19]. Studies have demonstrated that MVPC can outperform traditional methods in specific scenarios, 
especially when dealing with complex causal structures that include latent variables that have not been clearly defined 
[5]. The conditional independence relationship between two variables X and Y given a set of other variables Z, including 
error terms ϵ, is mathematically represented as Equation 3. 
 

𝑋 ⊥ 𝑌 | 𝑍 + 𝜖 (3) 
 
Description: 
X, Y = Variable under test 
Z = Set of conditions 
𝜖 = Error terms 
 
1.4 GrASP (Graphical Structure Learning via Sparse Penalty) 

GraSP (Graphical Structure Learning via Sparse Penalty) is an innovative algorithm for causal discovery that 
uses a sparse penalty approach to improve the identification of causal relationships between variables. It utilizes 
sparsity in the learning process to handle large datasets by reducing the problem's dimensionality and focusing on the 
most significant variables [18]. The non-convex nature of the penalty values used in GraSP allows causality modeling 
to be applied flexibly [23][24]. The utilization of GraSP performs well on high-dimensional data, namely data 
characterized by the number of significant variables exceeding the number of observational data [5]. GraSP 
substantially generates causality structures from data with considerable noise [25]. The objective function for GraSP, 
including the sparse penalty term, is mathematically represented as Equation 4. 
 

lim
𝐺∈𝜚

ℒ(𝐺; 𝐷) + 𝜆‖𝐺‖ (4) 

 
Description: 
G = Estimated graph structure 
ℒ(𝐺; 𝐷) = Negative log-likelihood of data D 
λ = Spare setting parameter 
 
1.5 Direct LINGAM 

Direct LiNGAM (Linear Non-Gaussian Acyclic Model) is a method of expressing causal relationships that utilizes 
the properties of Gaussian distribution and linear relationships between variables. The basic principle of Direct LiNGAM 
is to presume the existence of a directed acyclic graph (DAG) structure that represents the causal relationship for each 
variable. This characteristic allows the identification of causality direction based on statistical principles, and the 
elimination of causality direction is determined based on the standard distribution assumption score [26]. This approach 
efficiently identifies causal relationships in observational data with many complex assumptions [27]. The Direct LiNGAM 
algorithm has been applied in various domains, such as genetics and epidemiology, demonstrating its effectiveness in 
the health domain [28]. The basic linear model for the relationship between X and Y is shown in Equation 5. β and α 
are causality coefficients, while ϵY and ϵX are error values, Z is the variable that affects X. 
 

𝑌 = 𝛽𝑋 +  𝜖𝑌 
𝑋 = 𝛼𝑍 +  𝜖𝑋 

(5) 

 
Description: 
αZ = Causallity coefficients of Z variables 
βX = Causallity coefficients of X variables 
𝜖𝑌, 𝜖𝑋 = Error values of variables X dan Y 
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1.6 DAG-GNN 
Directed acyclic graph neural network (DAG-GNN) is a causal discovery algorithm that integrates graph theory 

with neural networks to model variable relationships represented by nodes and edges in a directed acyclic graph (DAG). 
DAG-GNN is a generative model that utilizes an autoencoder framework for graph structure learning [29]. It captures 
complex interrelationships among essential variables, such as climate causality studies and biological systems [30]. It 
also leverages deep learning capabilities to model complex relationships in observational data while maintaining the 
interpretability of causal graphs [5]. Some studies place the DAG-GNN algorithm as having high performance in causal 
inference, especially in high-dimensional datasets [25]. The basic formula of DAG-GNN uses neural network-based 
graph updating, represented as Equation 6. 
 

ℎ𝑣
(𝑡+1)

= 𝜎 (𝑊. ∑ ℎ 𝑢
(𝑡)

+ 𝑏

𝑢∈Ν(𝑣)

) (6) 

 
Description: 

ℎ𝑣
(𝑡+1)

 = Representatif of node v on step t 
𝛮(𝑣) = Set likelihood of node v 

𝜎  = Activation functions (ReLU or Sigmoid) 

𝑏 = Bias 
 
1.7 Recursive Casual Discovery 

Recursive Causal Discovery (RCD) is an algorithm designed to identify causal relationships in complex datasets, 
primarily when implemented on relational data. The limitations of traditional causality models in capturing dependencies 
between variables in relational data prompted the development of the RCD causality discovery model [31]. The study 
indicates that the ability of the RCD algorithm is outstanding in handling relational data under certain assumption 
conditions [32]. Applying the RCD methodology to large datasets can effectively identify causal disclosure relationships 
in the health and environmental science domains [33]. RCD uses a recursion-based algorithm to detect the direction of 
causation between variables. The approach of this model is shown in Equation 7, where f and g are non-linear functions 
that describe the cause-and-effect relationship between variables. 
 

𝑌 = 𝑓(𝑋, 𝑍) 𝑜𝑟 𝑋 = 𝑔(𝑌, 𝑍) (7) 
 

Evaluation of causality disclosure models through comparative analysis of several algorithms requires the 
utilization of appropriate metrics to measure the effectiveness and accuracy of the algorithms. The metrics used in this 
study include Structural Hamming Distance, Structural Intervention Distance, Matthew Correlation Coefficient, and 
Frobenius Norm. Structural Hamming Distance (SID) and Structural Intervention Distance (SHD) are metrics frequently 
used in causality analysis to evaluate how well the model can explain the existing data structure. Hamming Distance 
measures the difference between two structures, while Intervention Distance assesses the impact of interventions in 
the model [34]. Matthew Correlation Coefficient (MCC) is also a metric that measures the quality of model predictions 
by considering all possible outcomes. MCC provides a more accurate overview of the model's performance than other 
metrics, focusing only on a single aspect of the outcome. In addition, the Frobenius Norm is utilized to measure the 
error between the matrix generated by the model and the reference matrix [35]. 

 
2. Research Method 

This research methodology incorporates a comparative analysis approach of several causal discovery models to 
evaluate the performance in identifying causal relationships between variables in the dataset. The datasets are open-
source data in the healthcare domain: LUCAS, ALARM, CHILD, SACHS, DIABETES, and LUNG CANCER. Model 
evaluation metrics are based on Structural Hamming Distance (SHD), Structural Intervention Distance (SID), and 
Matthews Correlation Coefficient (MCC) to measure the structural difference between the predicted graph and the 
reference graph. The model with the best performance is used as a candidate model for the lung cancer potential 
screening tool. The detailed framework of this research is shown in Figure 1. 
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Figure 1. Research Framework 

 
The model comparison process begins with using the identified benchmark datasets, and the algorithms are 

compared to understand the causal relationships between variables. After dataset identification and model definition, 
an iterative causality uncovering process enables continuous algorithm performance evaluation when faced with 
different training and testing data proportions. This process is repeated until adequate results are achieved and 
comprehensively evaluated based on the evaluation metrics. The process continues to the inference stage, where the 
best-performing candidate model is used to predict lung cancer risk based on the adjacency matrix generated from the 
screening form. At this stage, users need to fill in questions according to variables that have a causal relationship to the 
potential for lung cancer. The results of this inference are used to measure the SID, SHD, and MCC scores, which 
assess the similarity between the reference matrix and the screening matrix. These scores are then contextualized 
through a prompt into LLM to generate explanatory refinements so that users can understand the risk of lung cancer in 
the natural language. The complete flow chart of this research is shown in Figure 2. 

 

 
Figure 2. Research Flow Diagram 
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2.1 Datasets 
The dataset for comparing algorithm performance uses data with independent and identically distributed (IID) 

types. Six data sources are used: LUCAS, CHILD, ALARM, SACHS, DIABETES, and LUNG CANCER. LUCAS data is 
a healthcare domain (medical) consisting of 2000 rows and 12 variables [36]. These datasets originate from different 
domains within healthcare and contain varying structures, including numerical and categorical variables. This dataset 
has a coefficient of variation (COV) characteristic on all variables ranging between 0.52 and 2.48, which indicates 
unbalanced characteristics. CHILD data is health domain data consisting of 5000 rows and 20 variables [37]. The 
characteristics of this data are that all variables are categorical types with a balanced distribution based on the Gini 
index value between 0.1 and 0.7. ALARM data is a dataset that represents a medical network that describes causal 
relationships in the context of patient monitoring. This data consists of 37 variables and 2000 rows. Ten numeric 
variables have COV values above 0.2, indicating an imbalanced distribution, while there are 27 categorical variables 
with a balanced distribution (chi-square = 1.0). The SACHS dataset is a flow cytometry experiment dataset in the 
biological domain that measures protein and phosphoprotein expression in human cells, consisting of 11 variables 
representing various proteins. This dataset contains 853 numeric samples with COV values between 0.2 and 0.5 
(imbalance). DIABETES data is a causality dataset in the health sector consisting of 9 variables and 2768 data samples. 
This data is numeric, with COV between 0.3 and 1.4, indicating an imbalance in each variable. The LUNGSCANCER 
health dataset has 17 variables consisting of 11 that all show a balanced status (chi-square p-value = 1.0) and six 
numeric variables that show variations in balance.  

To ensure the quality and consistency of these datasets before applying causal discovery algorithms, 
preprocessing steps were implemented. Data cleaning involved handling missing values using imputation techniques 
such as mean/mode substitution for numerical and categorical data, respectively, to prevent significant information loss. 
Normalization and standardization were applied to scale numerical variables, ensuring uniformity across datasets, 
particularly for algorithms sensitive to value ranges. Categorical encoding was performed by converting categorical 
variables into numerical representations using one-hot encoding or label encoding, depending on the algorithm's 
requirements. Additionally, the application of iterative analysis on the dataset was conducted by augmenting the dataset 
proportion between training and validation data, with proportions ranging from 10% training and 90% validation to 90% 
training and 10% validation. The iterative analysis on the dataset is perfomed by augmentating the dataset proportion 
between training and validation data. The combination of proportions begins with a composition of 10% training and 
90% validation, up to 90% training and 10% validation. 

The use of multiple datasets is justified by the need to evaluate the generalizability of causal discovery algorithms 
across different healthcare data structures. Each dataset represents distinct medical conditions, ensuring that the 
models are robust in diverse settings. The variations in variable types and distributions provide insight into how well 
each algorithm performs under different data complexities. This approach aligns with best practices in causal discovery 
research, where performance across varied datasets enhances model reliability and applicability in real-world scenarios. 

 
2.2 Causal Discovery Model 

The algorithms are classified into five approaches: Constraint-based, which includes PC and MVPC models that 
work by limiting statistical dependencies between variables to identify causal relationships; Score-based, such as GES 
and GraSP, which uses a score function to select the causal structure that best fits the data; modeling-based, such as 
the DirectLiNGAM and RCD algorithms that utilize causal function modeling to parse linear and non-linear relationships 
between variables; and Gradient-based, with the DAG-GNN algorithm that relies on gradient-based learning methods 
to detect causal structures. The analytical implementation procedure is executed within a Python programming 
framework utilizing the Causallearn and Castle libraries. 
 
2.3 Evaluation Metrics 

The presented performance measurement evaluation metrics cover a variety of approaches used to evaluate the 
performance of causality and graph structure models. These metrics are divided into two main categories: distance-
based graph measures and classification-based measures, each of which plays an essential role in assessing the 
accuracy and fit of the model to the reference data. 

 
2.3.1 Structural Hamming Distance 

The edge discrepancies between the two graphs are computed by analyzing their corresponding adjacency 
matrices. A score of 0 in the Structural Hamming Distance (SHD) signifies that the two graphs are congruent. G1 and 
G2 are two networks that are being compared. E1 is a collection of edges in G1, E2 is a collection of edges in G2, E1 \ 
E2 is an edge that is in G1 but not in G2, E2 \ E1 is the edge that is in G2, but not in G1, RE is the number of edges 
whose direction is different between G1 and G2. The Structural Hamming Distance between the two graphs is 
mathematically represented as Equation 8. 
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𝑆𝐻𝐷(𝐺1, 𝐺2) = |𝐸1 \ 𝐸2| + |𝐸2 \ 𝐸1| + |𝑅𝐸| (8) 
 
2.3.2 Structural Intervention Distance 

The Structural Intervention Distance (SID) highlights the importance of causal directionality alignment as 
established by the interventions executed, with a value of 0 denoting total unity between the target and the expected 
graphical depictions. 𝐺1 and 𝐺2  are the two networks being compared, 𝑛 is the number of nodes in the network, 𝑖 and 𝑗 
are the nodes being compared in the network, 𝑃𝐺(𝑖 → 𝑗) is the outcome of the effect of the intervention on 𝑖 of 𝑗 in the 

network 𝐺,1(. ) is an indicator function with the value one if its argument is valid and 0 if false. The Structural Intervention 
Distance between the two networks is mathematically represented as Equation 9. 

 

𝑆𝐼𝐷(𝐺1, 𝐺2) =  ∑ ∑ 1(𝑃𝐺1
(𝑖 → 𝑗) ≠ (𝑃𝐺2

(𝑖 → 𝑗))

 

𝑗≠1

𝑛

𝑖=1

 (9) 

 
2.3.3 Frobenius Norm 

Frobenius norms (FN) assess all inconsistencies present within the graph structure, including the absence or 
presence of edges and differences in directionality, where a result of 0 indicates that the two graphs are identical. In 
Equation 10, A is an m×n, matrix 𝑎𝑖𝑗 is the element of matrix A in the row of i and j column. m and n are the number of 

rows and columns of A, respectively. 
 

‖𝐴‖𝐹 = √∑ ∑|𝑎𝑖𝑗|
2

𝑛

𝑗=1

𝑚

𝑖=1

 (10) 

 
2.3.4 Matthew Correlation Coefficient (MCC) 

This metric measures how well a causal uncovering algorithm predicts the existence and direction of edges in a 
reference graph, with values ranging from -1 to +1, where +1 indicates perfect prediction. In Equation 11, TP is the 
number of positive detections that are true positive, TN is the number of negative detections that are true negative, FP 
is the number of negative cases that are detected as positive cases, and FN is the number of positive cases that are 
detected as negative. 
 

𝑀𝐶𝐶 =  
𝑇𝑃. 𝑇𝑁 − 𝑇𝑃. 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (11) 

 
2.3.5 False Discovery Rate 

False discovery rate (FDR) measures the proportion of causal relationships that the model incorrectly detects. 
FDR values range from 0 to 1, where 0 indicates no incorrect detection of causal relationships. Precision measures the 
proportion of correct causal relationships out of the total relationships predicted as positive by the model, with a value 
of 1 indicating a perfect prediction. TP is the number of positive detections that are confirmed positive, and FP is the 
number of negative cases that are detected as positive cases. The formula for FDR is mathematically represented as 
Equation 12. 
 

𝐹𝐷𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑃
 (12) 

 
2.4 Model Inference and Tool Development 

The causal discovery inference method for lung cancer screening involves identifying causal relationships 
between variables identified as causes of cancer based on the causal graph generated by the model. The variables 
based on the questionnaire answers are then represented as a screening graph that will be compared with the reference 
graph. Furthermore, MCC and FN-based evaluation metrics are used to measure the similarity of the screening graph 
pattern with the reference causal graph. By comparing these scores, we can calculate the suitability of the screening 
graph to the reference causal structure so that users get information on the potential risk of lung cancer numerically 
based on the MCC, SHD, and SID metrics. The development of the lung cancer risk screening tool is carried out in the 
Python programming environment. The Python framework used is Streamlit for interactive website management. The 
causal disclosure algorithm of the analysis results is used as reference knowledge to detect potential cancer risks. 
Transferring knowledge from the analysis environment to the tool environment (transfer knowledge) is carried out by 
saving the adjacency matrix of the analysis results in pickle format and then used in the application. The main 
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components of the tool consist of input, analysis, and output sections. The input section consists of a screening form 
adjusted to the variables that have a causal relationship to lung cancer. The process section consists of a causal 
disclosure algorithm and a large language model (LLM) to define the results of the graph suitability measurement. Then, 
the output section displays the results of the causality graph inferred by the user's screening results and the SID, SHD, 
and MCC suitability metric scores. 

 
3. Results and Discussion 

The results of the comparative analysis comparing seven causal discovery algorithms on six benchmark datasets 
were conducted to obtain candidate models for developing lung cancer risk screening tools. This comparison includes 
evaluating the performance of the PC, MVPC, GES, GraSP, DirectLiNGAM, RCD, and DAG-GNN algorithms tested on 
LUCAS, ALARM, SACHS, CHILD, DIABETES, and LUNGSCANCER data, considering aspects of accuracy, precision, 
and generalization ability in identifying causal relationships. The results of the analysis show significant performance 
variations between algorithms. 

 
3.1 Model Performance 

The results of iterative analysis on the PC, GES, Direct LINGAM, MVPC, GraSP, DAG-GNN, and RCD algorithms 
on the disclosure of causality graphs of health domain dataset produce varying evaluation metric values. The complexity 
of the dataset used significantly influences the evaluation metric value. Based on the measurement of distance-based 
evaluation metrics, namely SID and SHD, the information obtained is shown in Figure 3. 

 

 
Figure 3. The Metrics Evaluations of (a). Structural Intervention Distance and (b). Structural Hamming Distance 

 
The Structural Hamming Distance (SHD) and Structural Intervention Distance (SID) metrics show the level of 

difference between the actual graph and the predicted graph. From the performance displayed in the boxplot, it can be 
seen that data complexity (number of variables) significantly affects the graph generation error. In datasets with high 
complexity, such as ALARM, the average algorithm performance value of SID and SHD are 96 and 88, respectively. 
This shows that causal direction errors are directly proportional to the errors in the number of structures. However, the 
SID value is higher than SHD, indicating that the causal relationship error is more prominent than the mistake in 
predicting the number of nodes and edges. The performance of most algorithms on other datasets with low to moderate 
complexity shows that the algorithm's ability remains relatively stable, with SID and SHD scores below 100.  

Meanwhile, based on boxplot size variation, several models demonstrate high detection consistency despite 
differences in training and testing proportions. The PC, MVPC, GES, and Direct LiNGAM algorithms exhibit higher 
detection consistency than DAG-GNN, GraSP, and RCD. The RCD and DAG-GNN algorithms are significantly 
influenced by dataset proportions, with the highest performance achieved at 40% to 60% training-to-testing data 
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proportions. Based on the SHD and SID performance, the GES (Greedy Equivalent Search) algorithm shows the highest 
performance, achieving SHD = 0 and SID = 0 on the LUCAS dataset, indicating its effectiveness in reconstructing 
correct causal structures, although with a risk of overfitting. Deep learning-based algorithms such as DAG-GNN exhibit 
moderate performance when implemented with an appropriate dataset proportion. 

The evaluation of algorithm performance using classification-based measurements, namely Matthew Correlation 
Coefficient (MCC) and Frobenius Norm (FN), provides insight into prediction accuracy. MCC assesses causal structure 
classification quality, considering true positives, true negatives, false positives, and false negatives, with scores ranging 
from -1 to +1, where higher values indicate more accurate predictions. Meanwhile, Frobenius Norm (FN) measures 
differences between predicted adjacency matrices, where lower FN values indicate higher similarity between the 
predicted causal structure and the actual structure. The comparative analysis results highlight the performance 
variations among the seven tested algorithms, as illustrated in Figure 4. 

 

 
Figure 4. The Metrics Evaluations of (a). Mathew Coefficient of Correlation and (b). Frobenius Norm 

 
The results of the MCC metric evaluation (Table 1) show variations in algorithm performance in predicting 

causality from six benchmark datasets. The algorithm with consistent MCC scores above 0.5 is GES, while other 
algorithms tend to be influenced by data complexity and variations in the proportion of training and testing. The RCD 
algorithm has low performance on all datasets. Meanwhile, the PC and MVPC algorithms perform well on several 
datasets but poorly on the LUNGSCANCER dataset, with MCC values ranged between -0.1 and 0.4.  

 
Table 1. Median MCC Values for Causal Discovery Models Across Datasets 

Data DAG_GNN D_LiNGAM GES GraSP MVPC PC RCD 

ALARM 0.527132 0.381818 0.702831 0.467022 0.498234 0.498234 0.102564 
CHILD 0.263158 0.344828 0.704026 0.512007 0.631669 0.631669 0.120000 

DIABETES 0.153846 0.263158 0.617964 0.155941 0.377964 0.377964 0.134615 
LUCAS 0.285714 0.428571 1.000000 0.843345 0.606288 0.606288 0.183333 

LUNGSCANC. 0.229167 0.500000 1.000000 0.347375 0.000000 0.000000 0.300000 
SACHS 0.321429 0.375000 1.000000 0.000000 0.596557 0.596557 0.200000 

 
The DAG-GNN algorithm, with a gradient-based approach, shows increased performance on data with high 

complexity, but the MCC score tends to be small on data with a small number of variables. The performance 
characteristics of DAG-GNN can reveal causal relationships in data with many variables. This is in contrast to the GES 
algorithm, which is identified as experiencing a decrease in accuracy on data with high complexity. The Direct LiNGAM 
algorithm based on FCM shows moderate performance on datasets with a small to medium number of columns. 
Decreased performance is seen on datasets with significant variables caused by limitations in handling non-linear 

(a) 

(b) 
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dependencies between variables. Evaluation of the Frobenius norm (FN) score on the compared algorithms shows 
relatively small variation results, where the average FN score is below 20. The FN value on the DIABETES and 
LUNGSCANCER datasets identified several algorithms, such as Direct LiNGAM and RCD, that obtained high score 
variations. The RCD algorithm on the LUNGCANCER dataset has a variation in FN values from 1.9 to 113.2, which 
shows that this algorithm is highly influenced by the proportion of data and characteristics of the dataset being analyzed. 
The RCD algorithm gets the best FN score on a data proportion of 80% training and 20% testing, while based on data 
characteristics, this algorithm performs poorly on data with high data type complexity and disproportionate data balance. 
The Direct LiNGAM algorithm has the same characteristics as RCD in its application on the LUNGS CANCER dataset, 
which has a variation in FN between 0.6 and 70.8, while the optimum proportion of the dataset is between 80% and 
90% for the training process. 

 

 
Figure 5. Time Requirements 

 
The analysis time requirement parameters, as shown in Figure 5, show that the DAG-GNN and RCD algorithms 

requirelonger analysis time than other algorithms with more than 400 seconds. This time requirement is due to the 
analysis process using high computing resources to run the deep learning-based analysis process. On the other hand, 
the DAG-GNN and RCD algorithms can generate causal relationships in data with complex variables. Still, as 
compensation, they require longer analysis time than other algorithms. The overall evaluation results show that the 
GES algorithm has high performance in generating causal graphs on health domain datasets but has weaknesses in 
datasets with high complexity. This follows previous studies, which state that the GES algorithm consistently detects 
DAG graphs from non-parametric data and can handle specific test errors by minimizing nodes and edges [38]. The 
GES algorithm performs optimally on low-complexity large samples, guaranteeing maximum convergence of the 
generative structure class [39]. Overall, the evaluation results confirm that GES performs best in generating causal 
graphs on health domain datasets. However, its performance declines in high-complexity datasets. This finding aligns 
with previous studies, indicating that GES consistently detects Directed Acyclic Graph (DAG) structures from non-
parametric data while minimizing false positive causal edges. The GES algorithm is optimal for low-complexity, large-
sample datasets, ensuring maximum generative structure convergence. 
 
3.2 Inference Evaluation 

The performance evaluation of the causal discovery algorithm identified that the Greedy Equivalent Search 
(GES) algorithm has good performance, with the MCC metric score reaching 1 and the SID and SHD scores being 0. 
The causal graph results of the GES algorithm are shown in Figure 6 and will be used as a reference causal graph in 
the questionnaire-based lung cancer risk screening method.  

 

 
Figure 6. Graph Causal Discovery GES (LUCAS) 
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The lung cancer variable is a variable that is based on the causality graph as a result of the smoking and genetics 
variables. It is also a causal factor for coughing and fatigue. The two variables that are the result of lung cancer are 
symptom variables that indicate lung cancer. Based on the causal graph, we compile screening variables to detect the 
risk of lung cancer based on three categories, namely direct causes: smoking and genetics; direct symptoms: coughing 
and fatigue; and indirect causes: anxiety and peer pressure. The tool development process is carried out through the 
knowledge transfer process of the greedy equivalent search (GES) algorithm from the analysis environment to the 
application environment. This knowledge transfer process uses the Python pickle library to store the adjacency matrix 
parameters and the actual graph of the model detection results. The application framework used is streamlit, considering 
its ease of development and interactive features. The results of the tool development are installed on a virtual machine 
and can then be accessed using the URL https://hc.labdata.id.  The input form is developed based on the identification 
of the causality variables that show the factors that cause and affect lung cancer. Integration with the large language 
model (Large Language Model, LLM) gemma:27b is carried out to produce explanatory information on the similarity 
score of the analysis. The appearance of the tool result interface is shown in Figure 7. 

 

 
Figure 7. Output Interface Visualization of Lungs Cancer Screening 

 
The lung cancer risk detection tool provides multiple outputs, including a causal graph, risk score, adjacency 

matrix comparison, and LLM-based explanation. The tool visualizes both the reference causal graph derived from the 
developed model and the user-inferred graph generated based on screening responses. To ensure that the system 
aligns with the developed model, Structural Hamming Distance (SHD), Structural Intervention Distance (SID), Matthews 
Correlation Coefficient (MCC), and Frobenius Norm (FN) are utilized to quantify the structural similarity between the 
reference and inferred graphs. 

Additionally, the usability of the system is enhanced through an interactive interface and an LLM-based 
explanation mechanism, which translates numerical similarity scores into interpretable insights. The system’s readiness 
has been evaluated through performance benchmarking, ensuring real-time response and computational efficiency. 
These validation steps confirm the accuracy, usability, and robustness of the lung cancer screening tool. The tool output 
graph consists of a reference graph (knowledge) inferred by the user with red lines in the form of edges and nodes. 
This color indicates that the causality in that section is validated based on the user's input in the screening form. Then, 
the following tool output is an adjacency matrix consisting of a reference matrix and screening result metrics. The 
adjacency matrix in Figure 10 visualizes user responses when filling out the questionnaire based on screening variables. 
The two matrices will be measured for their level of similarity using the Matthew Correlation Coefficient (MCC) and 
Frobenius Norm (FN) measurements, indicating a high risk if the MCC value approaches 1 and FN approaches 0. The 
results of user inference on the reference graph are displayed in Figure 8 to provide visual information in the form of a 
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causality graph, which shows that the nodes significantly affect the risk of lung cancer. With this description, users will 
get visual information about which variables cause direct and indirect effects on lung cancer nodes. 

 

 
Figure 8. Inferred Graph from Questionnaire User 

 
4. Conclusion 

The comparative results of causal discovery algorithms on health domain data (medical) produce information that 
the Greedy Equivalent Search (GES) algorithm performs best. The GES algorithm is relatively stable in revealing 
causality with imbalanced data types and low complexity. Meanwhile, the trend of increasing algorithm performance in 
applying high-complexity data is shown in the DAG-GNN machine learning-based algorithm, which has the 
characteristic of growing accuracy with many variables. However, applying DAG-GNN requires more excellent 
computing resources and processing time than the GES algorithm. The implementation of the GES algorithm in 
detecting lung cancer risk has been carried out by measuring the suitability metric by comparing the reference adjacency 
metric and screening results. Further research can focus on increasing the number of datasets and adding variables 
that cause potential lung cancer. In additional studies, datasets with higher complexity can be used to compare the 
performance between models.  
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