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The growing integration of photovoltaic (PV) systems into power grids poses 
challenges due to the inherent variability in PV output, particularly during rapid 
weather changes. While existing forecasting methods often struggle to capture 
these fluctuations, accurate ultra-short-term PV power prediction is critical for 
grid stability. The study aims to develop an optimized BiLSTM-Dense model 
that enhances forecasting accuracy by incorporating an additional dense layer. 
The model is designed to improve forecasting performance over a 30-second 
horizon. It utilizes a dataset of solar irradiance, PV output power, surface 
temperature, ambient temperature, humidity, and wind speed, collected in late 
2023. Data preprocessing involved normalization and smoothing techniques to 
enhance robustness. Hyperparameter optimization was performed using grid 
search. Evaluation results demonstrate the superiority of the proposed model, 
achieving an MAE of 0.00271 and an RMSE of 0.00806 when paired with the 
Adam optimizer and Swish activation function. Compared to standard BiLSTM, 
the BiLSTM-Dense achieved MAE and RMSE improvements of 0.52% and 
2.19%, respectively. It also outperformed the LSTM model with reductions of 
4.00% in MAE and 2.65% in RMSE, and significantly surpassed ARIMA, 
reducing MAE by 98.87% and RMSE by 97.21%. These findings highlight the 
model’s ability to capture complex, non-linear dependencies in PV output data, 
outperforming conventional approaches like ARIMA, which rely on linear 
assumptions, and simpler architectures like LSTM, which lack bidirectional 
context integration. 

 
1. Introduction 

The global energy landscape is undergoing a profound transformation, driven by the increasing integration of PV 
systems into modern power grids. While this shift holds great promise for sustainable energy development, it also 
introduces significant technical challenges due to the inherent variability and intermittency of solar power generation 
[1],[2]. This variability poses a problem for maintaining grid stability and efficient energy management. Accurate ultra-
short-term PV power forecasting, which involves predictions on the order of seconds to a few minutes ahead, is crucial 
for ensuring grid stability, optimizing real-time energy dispatch, and enhancing the reliability of PV-based power systems 
[3],[4].  

Traditional forecasting approaches, including physical and statistical models, have been widely applied but often 
struggle to capture the complex, rapid fluctuations in PV power output, particularly during sudden weather transitions 
[5],[6]. The rise of machine learning and deep learning techniques has provided new opportunities to overcome these 
limitations [7],[8],[9]. These advanced methods excel in pattern recognition and predictive accuracy by leveraging large-
scale multivariate datasets and modeling intricate non-linear dependencies [10],[11]. Among these approaches, 
Recurrent Neural Networks (RNNs), particularly Long Short-Term Memory (LSTM) networks, have demonstrated 
remarkable effectiveness in time series forecasting applications [12],[13],[14]. The LSTM architecture mitigates the 
vanishing and exploding gradient problems common in traditional RNNs, enabling more robust modeling of temporal 
dependencies [15],[16]. 

Bidirectional LSTM (BiLSTM) architectures have gained attention for their ability to process sequential data in 
both forward and backward directions, capturing richer temporal patterns that can improve forecasting accuracy 
[17],[18]. Recent studies have extensively explored BiLSTM-based models for PV forecasting. For instance, Wencheng 
and Zhizhong [19] proposed an optimized BiLSTM model for short-term PV power forecasting, while Anu Shalini and 
Sri Revathi [20] proposed a hybrid CNN-BiLSTM approach that integrates spatial feature extraction to enhance 
predictive performance. Additionally, our previous work [21] emphasized the importance of hyperparameter optimization 
BiLSTM-based PV power prediction models.  
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Despite these advancements, several research gaps remain. First, only a limited number of studies have 
investigated ultra-short-term PV power forecasting using BiLSTM models, particularly under highly dynamic 
environmental conditions. Second, the effect of incorporating additional dense layers within BiLSTM architectures on 
forecasting accuracy has not been extensively examined. Third, a comprehensive evaluation comparing BiLSTM-Dense 
models with both traditional statistical models, such as ARIMA, and other deep learning architectures, such as LSTM, 
has yet to be thoroughly conducted. 

This study addresses these gaps by developing and evaluating an optimized BiLSTM-Dense model for ultra- 
short-term PV power forecasting. The research utilizes a high-resolution dataset collected in Bandung, Indonesia, a 
region with a tropical climate and significant weather variability. This setting provides an ideal test environment to assess 
the model’s robustness in handling rapid fluctuations in PV power output. 

The primary objective of this study is to design a BiLSTM-Dense model optimized for ultra-short-term PV power 
forecasting, leveraging multivariate inputs such as solar irradiance, PV output power, surface temperature, ambient 
temperature, humidity, and wind speed. A systematic evaluation of the model configuration is conducted, including the 
selection of optimizers, activation functions, and the integration of additional dense layers. Furthermore, a comparative 
analysis is performed against baseline ARIMA and LSTM models to assess the performance improvements across 
different weather conditions. 

By enhancing the accuracy and reliability of ultra-short-term PV power forecasting, this research contributes to 
improving grid stability, facilitating real-time energy management, and supporting the seamless integration of solar 
power into modern energy systems. The findings have direct implications for grid operators and energy planners, 
particularly in regions with high PV penetration, enabling more efficient renewable energy utilization and advancing 
global sustainability efforts. 

 
2. Research Method 

The research framework comprises several key stages: data collection and preprocessing, model development 
with hyperparameter tuning, and comparative performance evaluation. A visual overview of the research stages is 
presented in Figure 1, illustrating the logical flow and interconnections of the methodological framework. 
 

 
Figure 1. Research Stages 

 
2.1 Data Collection and Preprocessing 

This study utilizes a primary dataset collected from October 6 to November 24, 2023, in Bandung, Indonesia. The 
dataset spans multiple seasons, including the late dry season, the transitional period, and the early wet season. This 
collection period captures a diverse range of weather patterns typical of tropical climates, providing a robust foundation 
for evaluating the performance of the BiLSTM-Dense model under varying environmental conditions. Data were 
recorded at 30-second intervals over full 24-hour cycles, ensuring comprehensive coverage of diurnal variations in solar 
irradiance and related meteorological factors.  

The dataset, consisting of six key variables—solar irradiance (W/m²), PV output power (W), PV surface 
temperature (°C), ambient temperature (°C), relative humidity (%), and wind speed (m/s)—is represented in Table 1 
with a sample of the recorded data. These variables were selected based on their well-documented influence on PV 
power generation and their relevance to short-term forecasting models [22],[23],[24]. 
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Table 1. Sample of PV System Dataset 

Solar 
Irradiance 

PV 
Output Power 

PV Surface 
Temperature 

Ambient 
Temperature 

Relative 
Humidity 

Wind Speed 

628 34 47.2 31.9 47.9 1.7 
629 34.1 47.2 31.8 47.8 1.8 
630 34.2 47.1 31.8 47.7 1.8 
631 34.2 47.1 31.8 47.6 1.8 
633 34.3 47.3 31.8 47.5 1.7 

 
The preprocessing phase involved a series of sequential steps to ensure data quality, consistency, and suitability 

for model training. First, missing data points—caused by sensor malfunctions or environmental factors—were 
addressed using linear interpolation. This method preserves the temporal continuity of the time series while minimizing 
the impact of data gaps. Next, the data were resampled at 30-second intervals to maintain uniformity across all days 
and variables. To reduce noise and highlight underlying trends, a rolling window moving average with a window size of 
10 was applied. This smoothing technique mitigates short-term fluctuations while retaining essential patterns in the 
data. 

Subsequently, normalization was performed using min-max scaling, transforming all input features into the range 
[0,1], as shown in Equation (1). 
 

�̅�𝑖 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 (1) 

 
Where �̅�𝑖 represents the normalized value, 𝑥𝑖 is the original value, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the minimum and maximum 

values of the feature, respectively. This step is crucial for ensuring that variables with different scales contribute equally 
to the model's learning process, thereby improving convergence and overall performance.  

Finally, the preprocessed data were structured into a supervised learning format, where input sequences were 
paired with corresponding target values (PV output power). The dataset was then split into training and test sets using 
an 80:20 ratio, ensuring sufficient data for model development and rigorous performance evaluation [25]. This 
partitioning strategy facilitates an effective assessment of the model's generalizability to unseen data. 
 
2.2 LSTM Model 

The LSTM architecture, illustrated in Figure 2 is a specialized variant of RNNs designed to address the vanishing 
gradient problem commonly encountered in traditional RNNs. This problem often hinders the ability of standard RNNs 
to capture long-term dependencies in sequential data. LSTM units overcome this limitation through the use of three 
gating mechanisms—the forget gate, input gate, and output gate—which regulate the flow of information within the 
network [26],[27]. These gates enable the LSTM to selectively retain, update, and output information, making it 
particularly effective for time series forecasting tasks such as PV power prediction. 

 

 
Figure 2. LSTM Architecture 

 
The forget gate (Equation 2) determines which information from the previous cell state 𝐶𝑡−1 should be discarded. 

This gate uses a sigmoid activation function to produce a value between 0 and 1 for each element in the cell state, 
where 0 indicates complete removal and 1 indicates full retention. The input gate (Equation 3) controls which new 
information will be stored in the cell state. It consists of two components: a sigmoid layer that decides which values to 

update, and a tanh layer that generates a vector of candidate values �̃�𝑡 (Equation 4) to be added to the cell state. The 
cell state update (Equation 5) combines the outputs of the forget gate and input gate to update the cell state 𝐶𝑡. The 
output gate (Equation 6) determines which portions of the updated cell state will be output as the hidden state ℎ𝑡 
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(Equation 7). This gate uses a sigmoid activation function to filter the cell state, which is then passed through a tanh 
function to ensure the output values are within a normalized range. 
 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2) 

  
𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3) 

  

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (4) 

  

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 (5) 

  
𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (6) 

  
ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) (7) 

 
2.3 BiLSTM Model 

Expanding on the LSTM architecture, the Bidirectional Long Short-Term Memory (BiLSTM) model enhances the 
capabilities of traditional LSTM networks by processing sequential data in both forward and backward directions [28]. 
This bidirectional approach enables the model to capture temporal dependencies in both forward and backward 
directions, resulting in a more comprehensive representation of the sequence. As illustrated in Figure 3, the BiLSTM 
architecture consists of two distinct LSTM layers: a forward layer that processes the sequence from past to future 
(Equation 8) and a backward layer that processes the sequence from future to past (Equation 9). The outputs from both 
layers are subsequently combined through concatenation (Equation 10), resulting in a unified representation ℎ𝑡 that 
integrates information from both temporal perspectives. 
 

 
Figure 3. BiLSTM Architecture 

 
𝑓ℎ𝑡 = 𝐿𝑆𝑇𝑀+(𝑥𝑡 , 𝑓ℎ𝑡−1) (8) 

  
𝑏ℎ𝑡 = 𝐿𝑆𝑇𝑀−(𝑥𝑡 , 𝑏ℎ𝑡+1) (9) 

  
ℎ𝑡 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑓ℎ𝑡 , 𝑏ℎ𝑡) (10) 

 
2.4 Proposed Model Architecture 

In this study, an optimized BiLSTM-Dense model is proposed for ultra-short-term PV power forecasting. The 
model architecture, summarized in Figure 4, consists of a BiLSTM layer, a dense hidden layer, and a dense output 
layer. This design is specifically tailored to capture the complex temporal dependencies inherent in ultra-short-term 
time-series data while ensuring computational efficiency and robust predictive performance.  

To further enhance predictive accuracy, the model incorporates a BiLSTM layer with 50 units per direction, 
enabling it to effectively capture intricate temporal dependencies. Additionally, a dense hidden layer with eight neurons 
and the Rectified Linear Unit (ReLU) activation function is integrated to refine feature extraction and improve pattern 
learning. Finally, a dense output layer with a single neuron is used to generate the PV power forecast. 

For a consistent and rigorous evaluation, this architecture was applied throughout the hyperparameter tuning 
process, ensuring optimal model performance. 
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Figure 4. BiLSTM-dense Model Summary 

 
2.5 Hyperparameter Tuning 

Hyperparameters are critical variables that define an algorithm's behavior and learning process, set before model 
training begins. Optimizing these parameters is essential to maximizing the performance of the BiLSTM model in PV 
output power prediction. This study evaluates two adaptive optimizers, Adam and RMSprop, chosen for their ability to 
dynamically adjust learning rates during training, making them particularly effective for time-series forecasting 
applications.  

Based on empirical investigations and previous research [29], an initial learning rate of 8 x 10-5 was adopted. 
Additionally, this study examines the effects of different activation functions—specifically tanh, ReLU, and Swish—as 
documented in [21]. To systematically identify the optimal combination of optimizer and activation function, a grid search 
methodology was employed, ensuring a comprehensive exploration of the hyperparameter space to minimize the loss 
function and enhance forecasting accuracy. 
 
2.6 Model Training 

The model training phase incorporated several key parameters and optimization strategies. A batch size of 256 
was used to optimize computational efficiency and ensure stable gradient updates throughout the training process. The 
training was conducted for a maximum of 1000 epochs to allow comprehensive model convergence. To prevent 
overfitting, an early stopping mechanism was implemented with a patience threshold of 15 epochs, automatically halting 
training if no improvement in validation loss was observed over this period. This strategy enhanced the model's 
generalization ability for unseen data. 

Mean Absolute Error (MAE) was chosen as the primary loss function due to its robustness against outliers 
compared to Mean Squared Error (MSE), making it a more reliable metric for time-series forecasting. A grid search 
methodology was employed to systematically evaluate various parameter combinations, with the final model selected 
based on the optimal validation MAE performance. 

 
2.7 Model Evaluation and Comparative Analysis 

The assessment of model performance incorporated multiple evaluation metrics and a comparative analysis 
against an established baseline model. The primary metrics employed were MAE and RMSE, as defined in Equations 
11 and 12, respectively. These metrics were selected based on their widespread application in regression tasks and 
their complementary characteristics in error evaluation [30].  
 

MAE =
1

𝑛
∑ ∣ 𝑦𝑖 − �̂�𝑖 ∣

𝑛

𝑖=1

 (11) 

  

RMSE = √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

 (12) 

 
Where 𝑦𝑖 represents the actual value, �̂�𝑖 denotes the predicted value, and n is the total number of observations. 

MAE provides a linear scoring mechanism that treats all deviations equally, offering robust performance assessment 
less susceptible to outliers. Conversely, RMSE applies quadratic weighting to errors, making it particularly sensitive to 
large deviations and thus valuable when such errors are critically important to identify [31]. 

To establish a comprehensive evaluation framework, the optimized BiLSTM-Dense model's performance was 
benchmarked against two baseline models: an ARIMA model and an LSTM model with 50 units. The ARIMA model 
serves as a well-established baseline in time series forecasting applications, with its parameters—autoregressive order 
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(p), differencing degree (d), and moving average order (q)—optimized through an automated ARIMA selection process 
to ensure optimal configuration for the dataset. The LSTM model, which is a widely used deep learning architecture for 
time series forecasting, was implemented with 50 units to capture temporal dependencies in the data. This systematic 
approach to parameter selection for both the ARIMA and LSTM models ensures a fair and robust comparison between 
the traditional statistical approach (ARIMA) and deep learning methodologies (LSTM and BiLSTM). 

 
3. Results and Discussion 
3.1 Performance Evaluation of the BiLSTM Model 

The performance of the BiLSTM model is presented in Figure 5, which displays the training and validation loss 
curves for both Adam and RMSprop optimizers with different activation functions. The Adam optimizer consistently 
demonstrated smoother and more stable convergence across all activation functions compared to RMSprop, indicating 
its robustness in this experimental setup. For the Tanh activation function (Figure 5a and Figure 5d), the training loss 
decreased rapidly, but the validation loss exhibited a plateau, suggesting potential overfitting as the model struggled to 
generalize beyond the training data. 

The experimental results with different activation functions revealed distinct performance characteristics. The 
ReLU activation function (Figure 5b and Figure 5e) showed a balanced decrease in both training and validation loss, 
indicative of better generalization performance compared to Tanh. This behavior aligns with ReLU's ability to mitigate 
the vanishing gradient problem, particularly in deeper architectures. Meanwhile, the Swish activation function (Figure 
5c and Figure 5f) demonstrated a similar trend to ReLU but with slightly higher fluctuations in the validation loss. These 
fluctuations may indicate sensitivity to learning rate or the model's ability to adapt to the nonlinearities in the data. 
Overall, the results suggest that the Adam optimizer paired with ReLU activation provides the most reliable convergence 
and generalization, while the Swish function could offer comparable performance with further tuning. 

 

(a) 
 

(b) 
 

(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5. Training and Validation Loss Curves for the BiLSTM Models with Combinations of Optimizers and Activation 
Functions: (a) Adam-Tanh, (b) Adam-ReLU, (c) Adam-Swish, (d) RMSprop-Tanh, (e) RMSprop-ReLU, and  

(f) RMSprop- Swish 
 

Table 2 presents the quantitative performance metrics for the BiLSTM model across different optimizer and 
activation function combinations. The Adam optimizer consistently outperformed RMSprop across all activation 
functions in terms of both MAE and RMSE. Within the Adam configurations, the ReLU activation function achieved the 
lowest MAE (0.002726720) and RMSE (0.007885953) after 129 training epochs. For RMSprop, the Swish activation 
function demonstrated the best performance, with an MAE of 0.002827595 and RMSE of 0.008117516 after 137 
epochs. These findings align with the results of a previous study [21], which also reported superior performance using 
the Adam optimizer with ReLU, despite differences in the test data range. 
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Table 2. BiLSTM Model Performance 

Optimizer Activation Function Training Epoch MAE RMSE 

Adam Tanh 98 0.002780397 0.008082286 
 ReLU 129 0.002726720 0.007885953 

 Swish 135 0.002804370 0.008082999 
RMSprop Tanh 54 0.003091044 0.008252699 

 ReLU 85 0.003150812 0.008300175 
 Swish 137 0.002827595 0.008117516 

 
3.2 Performance Evaluation of the BiLSTM-Dense Model 

Figure 6 presents the training and validation loss curves for the BiLSTM-Dense model, evaluated using the Adam 
and RMSprop optimizers across different activation functions. The analysis reveals distinct performance patterns 
between the two optimizers and their interactions with various activation functions. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6. Training and Validation Loss Curves for the BiLSTM-Dense Models with Combinations of Optimizers and 
Activation Functions: (a) Adam-Tanh, (b) Adam-ReLU, (c) Adam-Swish, (d) RMSprop-Tanh, (e) RMSprop-ReLU, and  

(f) RMSprop-Swish 
 
The Adam optimizer demonstrated superior performance with smoother convergence compared to RMSprop, 

consistent with its adaptive learning rate mechanism. Using the Tanh activation function (Figure 6a), the model 
converged rapidly; however, signs of potential overfitting were observed as the training loss continued to decrease while 
the validation loss remained stable. The ReLU activation function (Figure 6b) displayed a steady decrease in both 
training and validation losses, albeit with slight fluctuations in the validation loss, suggesting that further tuning might 
be beneficial. The Swish activation function (Figure 6c) demonstrated the most consistent performance, with a balanced 
reduction in both training and validation loss curves, indicative of better generalization. 

The RMSprop optimizer exhibited more volatile convergence patterns across all activation functions. With the 
Tanh activation (Figure 6d), the convergence was relatively stable but still demonstrated variability that could hinder 
model performance. The ReLU activation (Figure 6e) showed pronounced fluctuations in the validation loss, reflecting 
potential sensitivity to the optimizer's inherent learning rate decay. The Swish activation (Figure 6f) paired with RMSprop 
exhibited relatively better stability, though the fluctuations remained higher than those observed with the Adam 
optimizer. 

The experimental results consistently showed that the Adam optimizer outperformed RMSprop in achieving 
smoother and more stable convergence. Among the activation functions, Swish paired with Adam yielded the most 
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balanced performance, suggesting that this combination could be advantageous for improving model generalization in 
future implementations. 

 
Table 3. BiLSTM-dense Model Performance 

Optimizer Activation Function Training Epoch MAE RMSE 

Adam Tanh 67 0.002754023 0.008120495 
 ReLU 103 0.002734262 0.007971514 
 Swish 126 0.002712584 0.008062921 

RMSprop Tanh 67 0.002950546 0.008077080 
 ReLU 59 0.003172181 0.008311608 
 Swish 130 0.002876321 0.008121968 

 
Table 3 presents the performance metrics for the BiLSTM-Dense model. Similar to the previous results, the Adam 

optimizer consistently outperformed RMSprop. However, the performance differences among activation functions were 
less pronounced. With Adam, the Swish activation function achieved the lowest MAE (0.002712584) after 126 epochs, 
while ReLU yielded the lowest RMSE (0.007971514) with 103 epochs. For RMSprop, the Tanh activation function 
demonstrated the best performance in terms of MAE (0.002950546) and RMSE (0.008077080), converging after 67 
epochs. 

The comparative analysis between standard and BiLSTM-Dense models reveals several key insights. The Adam 
optimizer consistently outperformed RMSprop across both model architectures, demonstrating smoother convergence 
and lower error metrics. While activation function choice had a more pronounced impact in the BiLSTM model, with 
ReLU showing superior performance when paired with Adam, the enhanced model showed less significant variations 
among activation functions. In the model with an additional dense hidden layer, Swish and ReLU slightly outperformed 
Tanh when used with Adam. 

 

 
Figure 7. Comparison of Predicted and Actual Normalized PV Power Over Time 

 
Quantitatively, the BiLSTM-Dense model exhibits a 0.52% improvement in MAE and a 2.19% improvement in 

RMSE compared to the BiLSTM model. These results suggest that the addition of a dense hidden layer can provide 
modest improvements in specific configurations. The convergence behavior was significantly influenced by optimizer 
and activation function choices, with Adam generally leading to more stable and efficient training compared to 
RMSprop's more volatile patterns. 

Figure 7 illustrated the comparison between predicted and actual normalized PV power across a series of time 
samples. The alignment between the predicted and actual values indicates the model's efficacy in capturing temporal 
patterns and accurately forecasting PV power output. Notably, the model demonstrates robust performance in tracking 
the cyclical nature of PV power generation, with minimal deviation observed between the two datasets. This visualization 
underscores the model's potential for reliable ultra-short-term PV forecasting. 

 
3.3 Comparison of Optimized BiLSTM-Dense Model with Baselines 

The performance comparison between the optimized BiLSTM-Dense model and the baseline models, ARIMA 
and LSTM, is presented in Table 4. The ARIMA model was optimized with parameters p=3, d=0, and q=2, achieving an 
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MAE of 0.238888644 and an RMSE of 0.282326144. Meanwhile, the baseline LSTM model achieved an MAE of 
0.002824230 and an RMSE of 0.008100637. 
 

Table 4. Comparison of BiLSTM-dense, LSTM and ARIMA Models 

Model MAE RMSE 

BiLSTM-Dense 0.002712584 0.007885953 
LSTM 0.002824230 0.008100637 
ARIMA 0,238888644 0,282326144 

 
The BiLSTM-Dense model demonstrated a substantial performance improvement over both the LSTM and 

ARIMA baselines, achieving a 4.00% reduction in MAE and a 2.65% reduction in RMSE compared to LSTM, and a 
98.87% reduction in MAE and a 97.21% reduction in RMSE compared to ARIMA. The inclusion of the dense layer in 
the BiLSTM-Dense model contributed significantly to its superior performance. This additional layer enhances the 
model’s ability to capture more complex relationships between features, refining the learning process and enabling the 
model to better adapt to the data’s intricacies.  

Unlike ARIMA, which assumes linear relationships within time series data, BiLSTM-Dense is capable of capturing 
the complex, non-linear patterns often present in photovoltaic output power data due to factors such as weather 
variations, system dynamics, and other environmental influences. While LSTM captures some of these patterns through 
its unidirectional structure, the bidirectional nature of BiLSTM allows the model to consider both past and future contexts, 
further enhancing its ability to capture the cyclical nature of daily and seasonal patterns in solar power generation. The 
dense layer added to the BiLSTM architecture strengthens this capability, allowing the model to better interpret the 
intricate relationships between time series inputs. 
 
4. Conclusion 

The proposed BiLSTM-Dense model, optimized with the Adam optimizer and Swish activation function, 
demonstrated superior performance, with the Adam optimizer offering convergence stability and better error metrics 
compared to RMSprop, achieving the lowest MAE of 0.002712584 and RMSE of 0.008062921. The integration of a 
dense hidden layer showed varying effects across different configurations. In the BiLSTM model, the combination of 
the Adam optimizer and ReLU activation function yielded the best performance, with an MAE of 0.002726720 and 
RMSE of 0.007885953. This indicates that the BiLSTM-Dense model achieved improvements of 0.52% in MAE and 
2.19% in RMSE over the BiLSTM model, proving that increased model complexity can be advantageous for specific 
tasks. However, these improvements were not consistent across all configurations, emphasizing the need for careful 
task-specific tuning. A comparative analysis also revealed that the BiLSTM-Dense significantly outperformed the LSTM 
model, achieving a 4.00% reduction in MAE and a 2.65% reduction in RMSE. Additionally, the BiLSTM-Dense model 
significantly outperformed the ARIMA model, with reductions of 98.87% in MAE and 97.21% in RMSE. This substantial 
performance gap highlights the BiLSTM's ability to capture complex, non-linear patterns in PV output data, which the 
linear assumptions of ARIMA and the simpler architecture of LSTM cannot effectively model. 

 
5. Future Works 

Future studies could explore the scalability of BiLSTM models by applying them to larger datasets and diverse 
environmental conditions. Investigating the effects of hyperparameter optimization and the inclusion of additional 
features may further enhance forecasting accuracy. Comparative analysis with alternative deep learning architectures, 
such as Transformer or CNN-based models, could provide deeper insights into their relative strengths. Furthermore, 
deploying these optimized models in real-world settings could validate their practical utility, particularly in improving the 
integration and management of renewable energy systems. 
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