
Cite: W. E. Y. Retnani, M. ’Ariful . Furqon, and J. Setiawan, “Improving Software Defect Prediction Using a Combination of Ant Colony
Optimization-based Feature Selection and Ensemble Technique”, KINETIK, vol. 9, no. 4, Nov. 2024. https://doi.org/10.22219/kinetik.v9i4.2038

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
Journal homepage: http://kinetik.umm.ac.id
ISSN: 2503-2267
Vol. 4, No. 3, August 2019, Pp. 277-288

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
Journal homepage: http://kinetik.umm.ac.id
ISSN: 2503-2267
Vol. 9, No. 4, November, Pp. 389-396

389

 Improving software defect prediction using a combination of ant
colony optimization-based feature selection and ensemble technique

Windi Eka Yulia Retnani *1, Muhammad ‘Ariful Furqon2, Juni Setiawan1

Information Technology Department, Universitas Jember, Indonesia1
Informatics Department, Universitas Jember, Indonesia2

Article Info Abstract
Keywords:
Software Defect, Ant Colony Optimization,
SMOTE, Ensemble

Article history:
Received: June 07, 2024
Accepted: August 01, 2024
Published: November 01, 2024

Cite:
W. E. Y. Retnani, M. ’Ariful . Furqon, and J.
Setiawan, “Improving Software Defect
Prediction Using a Combination of Ant
Colony Optimization-based Feature Selection
and Ensemble Technique”, KINETIK, vol. 9,
no. 4, Nov. 2024.
https://doi.org/10.22219/kinetik.v9i4.2038

*Corresponding author.
Windi Eka Yulia Retnani
E-mail address:
windi.ilkom@unej.ac.id

Software defect prediction plays a vital role in enhancing software quality and
minimizing maintenance costs. This study aims to improve software defect
prediction by employing a combination of Ant Colony Optimization (ACO) for
feature selection and ensemble techniques, particularly Gradient Boosting.
This research utilized three NASA MDP datasets: MC1, KC1, and PC2, to
evaluate the performance of four machine learning algorithms: Random Forest,
Support Vector Machine (SVM), Decision Tree, and Naïve Bayes. The data
preprocessing comprised handling class imbalance using SMOTE and
converting categorical data into numerical representations. The results indicate
that the integration of ACO and Gradient Boosting significantly enhances the
accuracy of all four algorithms. Notably, the Random Forest algorithm achieved
the highest accuracy of 99% on the MC1 dataset. The findings suggest that
combining ACO-based feature selection with ensemble techniques can
effectively boost the performance of software defect prediction models, offering
a robust approach for early detection of potential software defects and
contributing to improved software reliability and efficiency.

1. Introduction

According to the National Institute of Standards and Technology, system losses in software defects amount to
$60 billion. The cost of repairing software defects during design stage can reach 60 times the software development
cost, and 100 times if the software defects are found after the release [1]. In general, software defect prediction is also
a cost-sensitive problem [2]. Predictions on software defects are carried out using data sets from previous software [3].
The NASA dataset is one of the publicly available datasets, which is very popular and has been widely used in
developing software defect prediction models, because obtaining NASA dataset is very easy [4]. The NASA dataset
shows that there is more non-defective data than defective data, causing data imbalance and noise. This is a problem
frequently found in software defect predictions, so that the prediction results tend to produce many classes, namely no
defect class. To overcome this problem, it is necessary to modify the prediction technique by adding other techniques
or combining other algorithms [5].

Software quality can be improved in various ways, but the most effective method is to prevent defects by
predicting the probability of defects [6]. The most commonly used method for predicting software defects is the
Prediction method [5]. The majority of current software defect predictions use supervised machine learning algorithms
to predict defects in software applications [7].

Four previous studies discussed how machine learning algorithms work in predicting software defects in NASA
datasets. This research uses an ensemble technique classified as a boosting method, namely Gradient boosting,
because it takes shorter time and has good performance [8], and confirms that Support Vector Machine algorithm can
be used to predict software defects in NASA dataset [9]. A study [10] found that Random Forest algorithm has a good
accuracy in measuring model performance. Apart from that, [11] stated that one of the feature selection techniques,
namely Ant Colony Optimization, can be used to select good features to improve the performance of the algorithm
model. Ant Colony Optimization utilizes a probability-based decision-making process, in which each ant constructs a
solution by iteratively selecting the next step based on the combination of the desirability of the solution and the amount
of pheromone present[12]. Meanwhile, according to research by [2] the Naïve Bayes algorithm and Decision Tree are
the algorithms that can be used to compare several other algorithms.

Support Vector machine is a binary classification of datasets, where the decision boundaries to solve the learning
sample is the maximum margin hyperplane in svm, which is very good in terms of robustness [13]. Different from other
algorithm that usually find the best single line between classes to classify the data [14], SVM separates the classes by
using three separating lines, one for main separating line and two other lines are the support line [15]. Decision Tree is
a machine learning algorithm with the simplest modeling techniques to classify data by using graphs, such as trees that

https://doi.org/10.22219/kinetik.v9i4.2038
http://kinetik.umm.ac.id/
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1457736067&1&&2016
http://kinetik.umm.ac.id/
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1457736067&1&&2016
http://kinetik.umm.ac.id
https://doi.org/10.22219/kinetik.v9i4.2038
https://crossmark.crossref.org/dialog/?doi=10.22219/kinetik.v9i4.2038&domain=pdf

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

© 2024 The Authors. Published by Universitas Muhammadiyah Malang
This is an open access article under the CC BY NC SA license (https://creativecommons.org/licenses/by-nc-sa/4.0/)

390

show leaf structure and node [16]. Naive Bayes is a probability classification based on Bayes' theorem and considering
the impact of attribute values on certain classes. The goal of Naïve Bayes is to simplify the calculations [17]. Random
Forest is an ensemble bagging-based classifier as basic learner, this model divides the training data into several trees’
decision [11]. Random Forest is a parallel ensemble Machine Learning classifying algorithm based on the bagging
technique [18].

Different from the results of the previous researches, this research focused on comparing four machine learning
algorithms with an innovative approach by combining Ant Colony Optimization-based feature selection and ensemble
technique. While previous studies have highlighted the strengths of each algorithm in predicting software defects, a
comprehensive comparison incorporating these advanced methods remains unexplored. By integrating Ant Colony
Optimization for feature selection, this study can enhance the performance of each algorithm by selecting the most
relevant features, thereby improving the prediction accuracy. Additionally, employing an ensemble technique, such as
Gradient Boosting, can improve model performance by combining the strengths of each model and reducing the
prediction errors. This approach can also address data imbalance issues, frequently overlooked in current research, by
ensuring that the ensemble method can effectively handle varied data distributions.

2. Research Method

This research employs the following methods to compare the Random Forest, Support Vector Machine (SVM),
Decision Tree, and Naïve Bayes algorithms in predicting software defect using a combination of ensemble and Ant
Colony Optimization. Figure 1 illustrates the research stages throughout the study.

Figure 1. Research Stages

The data is obtained from the NASA MDP Software Defect Datasets website in arff format, which is a file that

describes a list of data containing defect and no defect data [19]. In the data collection process, researchers used three
NASA MDP (Metric Data Program) datasets, namely MC1, KC1 and PC2, because these data have better accuracy
than several other datasets. The NASA MDP (Metric Data Program), MC1, KC1 and PC2 datasets, each has a different
amount of data, namely the MC1 dataset has a total of 39 attributes with 2031 data, the KC1 dataset has a total of 22
attributes with 1183 data, the PC2 has a total of 36 attributes with 786 records. Detailed information regarding the
dataset used in this study is provided in Table 1.

Table 1. MC1 Dataset Description

Loc_Blank Call_Pairs … Number_of_Lines Loc_Total Defective

8.0 0.0 … 76.0 55.0 b’N’
2.0 0.0 … 20.0 16.0 b’N’
11.0 0.0 … 183.0 53.0 b’N’
0.0 0.0 … 7.0 5.0 b’N’
0.0 0.0 … 9.0 5.0 b’N’
… … … … … …
5.3 2.4 … 17.6 20.8 b’N’

Data preprocessing techniques were employed to enhance the datasets quality and suitability for classification

analysis. These techniques aimed to refine and standardize the dataset by addressing missing values and irrelevant
attributes. The preprocessing steps included in-depth procedures to handle missing data, ensuring the dataset remained

https://creativecommons.org/licenses/by-nc-sa/4.0/

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Cite: W. E. Y. Retnani, M. ’Ariful . Furqon, and J. Setiawan, “Improving Software Defect Prediction Using a Combination of Ant Colony
Optimization-based Feature Selection and Ensemble Technique”, KINETIK, vol. 9, no. 4, Nov. 2024. https://doi.org/10.22219/kinetik.v9i4.2038

391

robust and suitable for subsequent analysis [20]. The problem and dataset in question determine the technique used.
One of which is oversampling techniques, such as SMOTE (Synthetic Minority Over-sampling Technique) [21]. SMOTE
is able to reach better performance than the modified version in certain dataset and classification algorithm. Therefore,
this research used SMOTE, which is the benchmark of oversampling method that has been successfully applied in
many cases to improve the generalization performance of classifier in minority class. SMOTE even still has good
performance when the number of the samples in the minority class is quite small [22]. Table 2 comprehensively explains
the specific preprocessing techniques utilized in this study.

Table 2. Data Preprocessing Techniques

Preprocessing Technique Description Function

Data Transformation

Attribute labels were renamed, and
their categorical format was converted
into numeric representations as part
of the data preprocessing stage.

LabelEncoder()

SMOTE
Handling class imbalance for
improving performance to produce a
good model in increasing accuracy.

Imblearn.over_sampling
import SMOTE

Feature Selection (Ant
Colony Optimization)

Selected best feature from several
existing attributes, by determining the
number of iteration

Num_ants

Data splitting is the process of separating a dataset into subsets for building a good machine learning model [23].

At this stage, testing data and training data were generated and tested in the next stage. At this stage, scikit-learn library
'train_test_split()' is used to divide the dataset into two subsets, namely testing and training [24]. Data splitting is needed
to separate the dataset and produce training data and testing data that can be used in training machine learning models
and validating models. As previously discussed, the dataset used this time has an imbalance in the type of classification
results, where the classification of safe programs is more dominant than the classification of programs labeled as
malware. Therefore, a data balancing method must be applied [25]

The model employed in this study included four machine-learning algorithms, namely Random Forest, Support
Vector Machine, Decision Tree, and Naïve Bayes. These algorithms were selected based on a comprehensive review
of prior studies, which highlighted their superior accuracy and diverse advantages. The model was constructed by
utilizing functions accessible from the Sklearn library in Python, coupled with hyperparameter optimization techniques
to enhance each classifier's performance [26]. Table 3 outlines the specific parameter scenarios employed in the model-
building process.

Table 3. Parameter Scenarios

Classifier Parameter

Random Forest RandomForestClassifier()

Support Vector Machine
SVC(gamma="auto",kernel='linear',degree=3,C=1,
random_state=99)

Decision Tree DecisionTreeClassifier(max_depth=10,criterion="gini")
Naïve Bayes GaussianNB()

Ensemble technique, specifically Gradient Boosting, is selected because it is a good technique for increasing the

accuracy of four algorithms being used, namely Random Forest, Decision Tree, Support Vector Machine and Naïve
Bayes. From several techniques, Gradient Boosting succeeded in obtaining good accuracy in every algorithm with good
accuracy.

Model evaluation was used to measure the performance of the algorithms being used, consisting of confusion
matrix, accuracy, precision and recall. This research also compared the results of the original algorithm with the
combined algorithms, namely Ant Colony Optimization and ensemble technique, particularly Gradient Boosting.

3. Results and Discussion

Before starting the model building phase using the NASA dataset, a comprehensive data preprocessing is
necessary to optimize the suitability of datasets analysis. This preprocessing phase included several important steps to
improve data integrity and facilitate practical model construction. First, a transformation stage was carried out on the
categorical column, namely the Defective attribute, and it is converted into a numerical representation using the
LabelEncoder() function from Sklearn. Table 4 provides an overview of the post-transformation dataset, illustrating the
results of this preprocessing procedure.

https://doi.org/10.22219/kinetik.v9i4.2038

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

© 2024 The Authors. Published by Universitas Muhammadiyah Malang
This is an open access article under the CC BY NC SA license (https://creativecommons.org/licenses/by-nc-sa/4.0/)

392

Table 4. Data Transformation Results

Loc_Blank Branch_Count … Num_Unique_Operators Loc_Total Defective

9.0 11.0 … 21.0 41.0 1
0.0 1.0 … 6.0 7.0 0
18.0 31.0 … 28.0 184.0 1
1.0 5.0 … 12.0 23.0 1
5.0 17.0 … 15.0 96.0 1
… … … … … …
2.0 5.0 … 12.0 9.0 1

This stage used SMOTE (Synthetic Minority Over-Sampling Technique) as a resampling technique commonly

used in machine learning to handle class imbalance problems in datasets. SMOTE is useful for improving performance
so as to produce a good model that increases the accuracy. SMOTE handles class imbalance, prevents overfitting, and
improves model performance. Figure 2 shows the results of one of the datasets before and after SMOTE.

a b
Figure 2. SMOTE Results (a) before SMOTE; (b) after SMOTE

This stage is the process of selecting the most relevant features from the dataset or features that will be used in

building a prediction model which aims to improve model performance by reducing unused features. The Ant Colony
Optimization (ACO) algorithm begins with initializing variables that are important for the next process, such as the
number of ants (num_ants), as well as variables to track the best features and best accuracy. Figure 3 shows an
example of a flowchart in the feature selection process, and Table 5 shows the results of selecting the best features
from each dataset.

Figure 3. Flowchart ACO Process

https://creativecommons.org/licenses/by-nc-sa/4.0/

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Cite: W. E. Y. Retnani, M. ’Ariful . Furqon, and J. Setiawan, “Improving Software Defect Prediction Using a Combination of Ant Colony
Optimization-based Feature Selection and Ensemble Technique”, KINETIK, vol. 9, no. 4, Nov. 2024. https://doi.org/10.22219/kinetik.v9i4.2038

393

Table 5. Result the Best feature

No Dataset Best Feature

1 KC1

Halstead_effort

Halstead_content

Halstead_length

Halstead_difficulty

Num_unique_operands

Halstead_volume

Loc_comments

Loc_blank

Branch_count

Halstead_error_est

2 MC1

Call_pairs

Num_operands

Normalized_cylomatic_complexity

Num_operators

Branch_count

Halstead_effort

Halstead_prog_time

Global_data_complexity

Halstead_level

Condition_count

3 PC2

Multiple_condition_count

Edge_count

Halstead_volume

Parameter_count

Halstead_effort

Loc_executable

Halstead_error_est

Condition_count

Num_unique_operators

Cyclomatic_density

This study combined four different algorithms, namely Random Forest, Support Vector Machines, Decision Trees

and Naive Bayes. This study employed various evaluation methods to assess the algorithm performance, including
confusion matrix, accuracy, precision, and recall.

At this stage, ensemble technique was used, namely Gradient Boosting, because it is a good technique for
increasing the accuracy of the four algorithms being used, namely Random Forest, Decision Tree, Support Vector
Machine and Naïve Bayes. From several techniques, Gradient Boosting succeeded in obtaining good accuracy in every
algorithm with good accuracy. Figure 4 shows an example diagram of the ensemble technique process using gradient
boosting. The results of the gradient boosting can be seen in Table 6.

Figure 4. Ensemble Technique Process

https://doi.org/10.22219/kinetik.v9i4.2038

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

© 2024 The Authors. Published by Universitas Muhammadiyah Malang
This is an open access article under the CC BY NC SA license (https://creativecommons.org/licenses/by-nc-sa/4.0/)

394

Table 6. Ensemble Technique Results

No Algorithm Dataset Accuracy

1
Support Vector

Machine

KC1 0,65

MC1 0,88

PC2 0,91

2 Random Forest

KC1 0,84

MC1 0,99

PC2 0,97

3 Decision Tree

KC1 0,76

MC1 0,98

PC2 0,97

4 Naïve Bayes

KC1 0,59

MC1 0,72

PC2 0,83

The final stage of this research was the model evaluation stage, where the model evaluation was used to measure

the performance of the algorithms being used, namely confusion matrix, accuracy, precision and recall. This research
also compared the results of the original algorithm with the combined algorithms, namely Ant Colony Optimization and
ensemble technique, particularly Gradient Boosting. Table 7 shows the comparative results of the model evaluation.

Table 7. Comparative Model Evaluation Results

Algorithm Dataset

Model Evaluation

Original algorithm Combined algorithms

Accuracy Precision Recall Accuracy Precision Recall

Decision
Tree

KC1 0,73 0,73 0,69 0,76 0,78 0,73

MC1 0,94 0,91 0,97 0,98 0,97 0,98

PC2 0,95 0,94 0,97 0,96 0,97 0,96

Random
Forest

KC1 0,83 0,85 0,78 0,84 0,85 0,82

MC1 0,99 0,98 0,99 0,99 0,98 1,00

PC2 0,98 0,97 0,99 0,97 0,97 0,98

Support
Vector

Machine

KC1 0,61 0,64 0,44 0,65 0,75 0,47

MC1 0,79 0,77 0,81 0,88 0,84 0,93

PC2 0,85 0,78 1,00 0,91 0,84 1,00

Naïve
Bayes

KC1 0,60 0,67 0,35 0,59 0,71 0,31

MC1 0,62 0,73 0,32 0,72 0,68 0,81

PC2 0,81 0,84 0,77 0,83 0,83 0,83

From Table 7, it can be concluded that the four algorithms obtained good accuracy after being combined with Ant

Colony Optimization and ensemble technique. By using Ant Colony Optimization and ensemble techniques, the four
algorithms showed a significant increase in accuracy. Random Forest algorithm achieved the highest accuracy of 0.99
on the MC1 dataset both before and after the combination, showing its stable performance. After the combination,
Decision Tree also showed a significant increase in accuracy, from 0.94 to 0.98 on dataset MC1, and from 0.95 to 0.96
on dataset PC2. The Support Vector Machine algorithm experienced an increase in accuracy from 0.79 to 0.88 on the
MC1 dataset. These results show that the combination of Ant Colony Optimization and ensemble techniques can
improve the accuracy of the algorithms, especially on the Decision Tree algorithm with an accuracy of 0.98 on dataset
MC1. In addition, Random Forest algorithm is declared stable because it obtained good accuracy.

4. Conclusion

The evaluation of the defect software prediction model using Random Forest, Decision Tree, Support Vector
Machine, and Naive Bayes algorithms after being combined with Ant Colony Optimization-based feature selection and
ensemble technique, namely Gradient Boosting, shows that the accuracy of the four algorithm models had successfully
increased by an average of 2% to 10%. Therefore, it can be concluded that the Feature Selection and Ensemble
technique can increase the accuracy of the four algorithms being used.

Acknowledgement

We would like to show our gratitude to Universitas Jember for facilitating us in developing this research paper.
Hopefully, this research can make a major contribution to the advancement of Computer Science.

https://creativecommons.org/licenses/by-nc-sa/4.0/

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Cite: W. E. Y. Retnani, M. ’Ariful . Furqon, and J. Setiawan, “Improving Software Defect Prediction Using a Combination of Ant Colony
Optimization-based Feature Selection and Ensemble Technique”, KINETIK, vol. 9, no. 4, Nov. 2024. https://doi.org/10.22219/kinetik.v9i4.2038

395

References
[1] N. Hidayati, J. Suntoro, and G. G. Setiaji, “Perbandingan Algoritma Klasifikasi untuk Prediksi Cacat Software dengan Pendekatan CRISP-DM,”

Jurnal Sains dan Informatika, vol. 7, no. 2, pp. 117–126, Nov. 2021. https://doi.org/10.34128/jsi.v7i2.313
[2] Y. Liu, W. Zhang, G. Qin, and J. Zhao, “A comparative study on the effect of data imbalance on software defect prediction,” in Procedia

Computer Science, Elsevier B.V., 2022, pp. 1603–1616. https://doi.org/10.1016/j.procs.2022.11.349
[3] N. Grattan, D. Alencar da Costa, and N. Stanger, “The need for more informative defect prediction: A systematic literature review,” Jul. 01,

2024, Elsevier B.V. https://doi.org/10.1016/j.infsof.2024.107456
[4] A. Saifudin, D. Romi, and S. Wahono, “Pendekatan Level Data untuk Menangani Ketidakseimbangan Kelas pada Prediksi Cacat Software,”

Journal of Software Engineering, vol. 1, no. 2, 2015.
[5] A. Hardoni, D. P. Rini, and S. Sukemi, “Integrasi SMOTE pada Naive Bayes dan Logistic Regression Berbasis Particle Swarm Optimization

untuk Prediksi Cacat Perangkat Lunak,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 1, p. 233, Jan. 2021.
http://dx.doi.org/10.30865/mib.v5i1.2616

[6] V. Chauhan, C. Arora, H. Khalajzadeh, and J. Grundy, “How do software practitioners perceive human-centric defects?,” Inf Softw Technol,
vol. 176, Dec. 2024. https://doi.org/10.1016/j.infsof.2024.107549

[7] A. Briciu, G. Czibula, and M. Lupea, “A study on the relevance of semantic features extracted using BERT-based language models for
enhancing the performance of software defect classifiers,” Procedia Comput Sci, vol. 225, pp. 1601–1610, 2023.
https://doi.org/10.1016/j.procs.2023.10.149

[8] A. S. Dyer et al., “Applied machine learning model comparison: Predicting offshore platform integrity with gradient boosting algorithms and
neural networks,” Marine Structures, vol. 83, May 2022. https://doi.org/10.1016/j.marstruc.2021.103152

[9] X. Dong, Y. Liang, S. Miyamoto, and S. Yamaguchi, “Ensemble learning based software defect prediction,” Journal of Engineering Research,
Nov. 2023. https://doi.org/10.1016/j.jer.2023.10.038

[10] A. Khalid, G. Badshah, N. Ayub, M. Shiraz, and M. Ghouse, “Software Defect Prediction Analysis Using Machine Learning Techniques,”
Sustainability, vol. 15, no. 6, p. 5517, Mar. 2023. https://doi.org/10.3390/su15065517

[11] Y. Al-Smadi, M. Eshtay, A. Al-Qerem, S. Nashwan, O. Ouda, and A. A. Abd El-Aziz, “Reliable prediction of software defects using Shapley
interpretable machine learning models,” Egyptian Informatics Journal, vol. 24, no. 3, Sep. 2023. https://doi.org/10.1016/j.eij.2023.05.011

[12] S. Manakkadu and S. Dutta, “Ant Colony Optimization based Support Vector Machine for Improved Classification of Unbalanced Datasets,” in
Procedia Computer Science, Elsevier B.V., 2024, pp. 586–593. https://doi.org/10.1016/j.procs.2024.05.143

[13] G. Gumelar, Q. Ain, R. Marsuciati, S. Agustanti Bambang, A. Sunyoto, and M. Syukri Mustafa, “Kombinasi Algoritma Sampling dengan
Algoritma Klasifikasi untuk Meningkatkan Performa Klasifikasi Dataset Imbalance,” 2021.

[14] A. John, I. F. Bin Isnin, S. H. H. Madni, and F. B. Muchtar, “Enhanced intrusion detection model based on principal component analysis and
variable ensemble machine learning algorithm,” Intelligent Systems with Applications, vol. 24, Dec. 2024.
https://doi.org/10.1016/j.iswa.2024.200442

[15] M. Athoillah and R. K. Putri, “Handwritten Arabic Numeral Character Recognition Using Multi Kernel Support Vector Machine,” Kinetik: Game
Technology, Information System, Computer Network, Computing, Electronics, and Control, pp. 99–106, Mar. 2019.
https://doi.org/10.22219/kinetik.v4i2.724

[16] I. Muslim Karo Karo and Hendryana, “Klasifikasi Penderita Diabetes Menggunakan Algoritma Machine Learning dan Z-Score,” Jurnal Teknologi
Terpadu , vol. 8 nomor 2, 2022.

[17] H. Nalatissifa, W. Gata, S. Diantika, and K. Nisa, “Perbandingan Kinerja Algoritma Klasifikasi Naive Bayes, Support Vector Machine (SVM),
dan Random Forest untuk Prediksi Ketidakhadiran di Tempat Kerja,” Jurnal Informatika Universitas Pamulang, vol. 5, no. 4, p. 578, Dec. 2021.
https://dx.doi.org/10.32493/informatika.v5i4.7575

[18] M. N. Ahmad, Z. Shao, X. Xiao, P. Fu, A. Javed, and I. Ara, “A novel ensemble learning approach to extract urban impervious surface based
on machine learning algorithms using SAR and optical data,” International Journal of Applied Earth Observation and Geoinformation, vol. 132,
Aug. 2024. https://doi.org/10.1016/j.jag.2024.104013

[19] S. Stradowski and L. Madeyski, “Industrial applications of software defect prediction using machine learning: A business-driven systematic
literature review,” Jul. 01, 2023, Elsevier B.V. https://doi.org/10.1016/j.infsof.2023.107192

[20] I. Mehmood et al., “A Novel Approach to Improve Software Defect Prediction Accuracy Using Machine Learning,” IEEE Access, vol. 11, pp.
63579–63597, 2023. https://doi.org/10.1109/ACCESS.2023.3287326

[21] Y. Chachoui, N. Azizi, R. Hotte, and T. Bensebaa, “Enhancing algorithmic assessment in education: Equi-fused-data-based SMOTE for
balanced learning,” Computers and Education: Artificial Intelligence, vol. 6, Jun. 2024. https://doi.org/10.1016/j.caeai.2024.100222

[22] K. Khadijah and P. S. Sasongko, “The Comparison of Imbalanced Data Handling Method in Software Defect Prediction,” Kinetik: Game
Technology, Information System, Computer Network, Computing, Electronics, and Control, pp. 203–210, Aug. 2020.
https://doi.org/10.22219/kinetik.v5i3.1049

[23] W. Wu, K. Chen, and E. Tsotsas, “Prediction of rod-like particle mixing in rotary drums by three machine learning methods based on DEM
simulation data,” Powder Technol, vol. 448, p. 120307, Dec. 2024. https://doi.org/10.1016/j.powtec.2024.120307

[24] M. Azhari, Z. Situmorang, and R. Rosnelly, “Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM
dan Naive Bayes,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 2, p. 640, Apr. 2021. http://dx.doi.org/10.30865/mib.v5i2.2937

[25] L. Hakim, Z. Sari, A. Rizaldy Aristyo, and S. Pangestu, “Optimzing Android Program Malware Classification Using GridSearchCV Optimized
Random Forest,” Computer Network, Computing, Electronics, and Control Journal, vol. 9, no. 2, pp. 173–180, 2024.

[26] P. R. Sihombing and I. F. Yuliati, “Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di
Indonesia,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 20, no. 2, pp. 417–426, May 2021.
https://doi.org/10.30812/matrik.v20i2.1174

https://doi.org/10.22219/kinetik.v9i4.2038
https://doi.org/10.34128/jsi.v7i2.313
https://doi.org/10.1016/j.procs.2022.11.349
https://doi.org/10.1016/j.infsof.2024.107456
http://dx.doi.org/10.30865/mib.v5i1.2616
https://doi.org/10.1016/j.infsof.2024.107549
https://doi.org/10.1016/j.procs.2023.10.149
https://doi.org/10.1016/j.marstruc.2021.103152
https://doi.org/10.1016/j.jer.2023.10.038
https://doi.org/10.3390/su15065517
https://doi.org/10.1016/j.eij.2023.05.011
https://doi.org/10.1016/j.procs.2024.05.143
https://doi.org/10.1016/j.iswa.2024.200442
https://doi.org/10.22219/kinetik.v4i2.724
https://dx.doi.org/10.32493/informatika.v5i4.7575
https://doi.org/10.1016/j.jag.2024.104013
https://doi.org/10.1016/j.infsof.2023.107192
https://doi.org/10.1109/ACCESS.2023.3287326
https://doi.org/10.1016/j.caeai.2024.100222
https://doi.org/10.22219/kinetik.v5i3.1049
https://doi.org/10.1016/j.powtec.2024.120307
http://dx.doi.org/10.30865/mib.v5i2.2937
https://doi.org/10.30812/matrik.v20i2.1174

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

© 2024 The Authors. Published by Universitas Muhammadiyah Malang
This is an open access article under the CC BY NC SA license (https://creativecommons.org/licenses/by-nc-sa/4.0/)

396

https://creativecommons.org/licenses/by-nc-sa/4.0/

