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Software defect prediction plays a vital role in enhancing software quality and 
minimizing maintenance costs. This study aims to improve software defect 
prediction by employing a combination of Ant Colony Optimization (ACO) for 
feature selection and ensemble techniques, particularly Gradient Boosting. 
This research utilized three NASA MDP datasets: MC1, KC1, and PC2, to 
evaluate the performance of four machine learning algorithms: Random Forest, 
Support Vector Machine (SVM), Decision Tree, and Naïve Bayes. The data 
preprocessing comprised handling class imbalance using SMOTE and 
converting categorical data into numerical representations. The results indicate 
that the integration of ACO and Gradient Boosting significantly enhances the 
accuracy of all four algorithms. Notably, the Random Forest algorithm achieved 
the highest accuracy of 99% on the MC1 dataset. The findings suggest that 
combining ACO-based feature selection with ensemble techniques can 
effectively boost the performance of software defect prediction models, offering 
a robust approach for early detection of potential software defects and 
contributing to improved software reliability and efficiency. 

 
1. Introduction 

According to the National Institute of Standards and Technology, system losses in software defects amount to 
$60 billion. The cost of repairing software defects during design stage can reach 60 times the software development 
cost, and 100 times if the software defects are found after the release [1]. In general, software defect prediction is also 
a cost-sensitive problem [2]. Predictions on software defects are carried out using data sets from previous software [3]. 
The NASA dataset is one of the publicly available datasets, which is very popular and has been widely used in 
developing software defect prediction models, because obtaining NASA dataset is very easy [4]. The NASA dataset 
shows that there is more non-defective data than defective data, causing data imbalance and noise. This is a problem 
frequently found in software defect predictions, so that the prediction results tend to produce many classes, namely no 
defect class. To overcome this problem, it is necessary to modify the prediction technique by adding other techniques 
or combining other algorithms [5]. 

Software quality can be improved in various ways, but the most effective method is to prevent defects by 
predicting the probability of defects [6]. The most commonly used method for predicting software defects is the 
Prediction method [5]. The majority of current software defect predictions use supervised machine learning algorithms 
to predict defects in software applications [7]. 

Four previous studies discussed how machine learning algorithms work in predicting software defects in NASA 
datasets. This research uses an ensemble technique classified as a boosting method, namely Gradient boosting, 
because it takes shorter time and has good performance [8], and confirms that Support Vector Machine algorithm can 
be used to predict software defects in NASA dataset [9]. A study [10] found that Random Forest algorithm has a good 
accuracy in measuring model performance. Apart from that, [11] stated that one of the feature selection techniques, 
namely Ant Colony Optimization, can be used to select good features to improve the performance of the algorithm 
model. Ant Colony Optimization utilizes a probability-based decision-making process, in which each ant constructs a 
solution by iteratively selecting the next step based on the combination of the desirability of the solution and the amount 
of pheromone present[12]. Meanwhile, according to research by [2] the Naïve Bayes algorithm and Decision Tree are 
the algorithms that can be used to compare several other algorithms. 

Support Vector machine is a binary classification of datasets, where the decision boundaries to solve the learning 
sample is the maximum margin hyperplane in svm, which is very good in terms of robustness [13]. Different from other 
algorithm that usually find the best single line between classes to classify the data [14], SVM separates the classes by 
using three separating lines, one for main separating line and two other lines are the support line [15]. Decision Tree is 
a machine learning algorithm with the simplest modeling techniques to classify data by using graphs, such as trees that 
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show leaf structure and node [16]. Naive Bayes is a probability classification based on Bayes' theorem and considering 
the impact of attribute values on certain classes. The goal of Naïve Bayes is to simplify the calculations [17]. Random 
Forest is an ensemble bagging-based classifier as basic learner, this model divides the training data into several trees’ 
decision [11]. Random Forest is a parallel ensemble Machine Learning classifying algorithm based on the bagging 
technique [18]. 

Different from the results of the previous researches, this research focused on comparing four machine learning 
algorithms with an innovative approach by combining Ant Colony Optimization-based feature selection and ensemble 
technique. While previous studies have highlighted the strengths of each algorithm in predicting software defects, a 
comprehensive comparison incorporating these advanced methods remains unexplored. By integrating Ant Colony 
Optimization for feature selection, this study can enhance the performance of each algorithm by selecting the most 
relevant features, thereby improving the prediction accuracy. Additionally, employing an ensemble technique, such as 
Gradient Boosting, can improve model performance by combining the strengths of each model and reducing the 
prediction errors. This approach can also address data imbalance issues, frequently overlooked in current research, by 
ensuring that the ensemble method can effectively handle varied data distributions. 

 
2. Research Method 

This research employs the following methods to compare the Random Forest, Support Vector Machine (SVM), 
Decision Tree, and Naïve Bayes algorithms in predicting software defect using a combination of ensemble and Ant 
Colony Optimization. Figure 1 illustrates the research stages throughout the study. 

 

 
Figure 1. Research Stages 

 
The data is obtained from the NASA MDP Software Defect Datasets website in arff format, which is a file that 

describes a list of data containing defect and no defect data [19]. In the data collection process, researchers used three 
NASA MDP (Metric Data Program) datasets, namely MC1, KC1 and PC2, because these data have better accuracy 
than several other datasets. The NASA MDP (Metric Data Program), MC1, KC1 and PC2 datasets, each has a different 
amount of data, namely the MC1 dataset has a total of 39 attributes with 2031 data, the KC1 dataset has a total of 22 
attributes with 1183 data, the PC2 has a total of 36 attributes with 786 records. Detailed information regarding the 
dataset used in this study is provided in Table 1. 

 
Table 1. MC1 Dataset Description 

Loc_Blank Call_Pairs … Number_of_Lines Loc_Total Defective 

8.0 0.0 … 76.0 55.0 b’N’ 
2.0 0.0 … 20.0 16.0 b’N’ 
11.0 0.0 … 183.0 53.0 b’N’ 
0.0 0.0 … 7.0 5.0 b’N’ 
0.0 0.0 … 9.0 5.0 b’N’ 
… … … … … … 
5.3 2.4 … 17.6 20.8 b’N’ 

 
Data preprocessing techniques were employed to enhance the datasets quality and suitability for classification 

analysis. These techniques aimed to refine and standardize the dataset by addressing missing values and irrelevant 
attributes. The preprocessing steps included in-depth procedures to handle missing data, ensuring the dataset remained 
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robust and suitable for subsequent analysis [20]. The problem and dataset in question determine the technique used. 
One of which is oversampling techniques, such as SMOTE (Synthetic Minority Over-sampling Technique) [21]. SMOTE 
is able to reach better performance than the modified version in certain dataset and classification algorithm. Therefore, 
this research used SMOTE, which is the benchmark of oversampling method that has been successfully applied in 
many cases to improve the generalization performance of classifier in minority class. SMOTE even still has good 
performance when the number of the samples in the minority class is quite small [22]. Table 2 comprehensively explains 
the specific preprocessing techniques utilized in this study. 

 
Table 2. Data Preprocessing Techniques 

Preprocessing Technique Description Function 

Data Transformation 

Attribute labels were renamed, and 
their categorical format was converted 
into numeric representations as part 
of the data preprocessing stage. 

LabelEncoder() 

SMOTE 
Handling class imbalance for 
improving performance to produce a 
good model in increasing accuracy. 

Imblearn.over_sampling 
import SMOTE 

Feature Selection (Ant 
Colony Optimization) 

Selected best feature from several 
existing attributes, by determining the 
number of iteration 

Num_ants 

 
Data splitting is the process of separating a dataset into subsets for building a good machine learning model [23]. 

At this stage, testing data and training data were generated and tested in the next stage. At this stage, scikit-learn library 
'train_test_split()' is used to divide the dataset into two subsets, namely testing and training [24]. Data splitting is needed 
to separate the dataset and produce training data and testing data that can be used in training machine learning models 
and validating models. As previously discussed, the dataset used this time has an imbalance in the type of classification 
results, where the classification of safe programs is more dominant than the classification of programs labeled as 
malware. Therefore, a data balancing method must be applied [25] 

The model employed in this study included four machine-learning algorithms, namely Random Forest, Support 
Vector Machine, Decision Tree, and Naïve Bayes. These algorithms were selected based on a comprehensive review 
of prior studies, which highlighted their superior accuracy and diverse advantages. The model was constructed by 
utilizing functions accessible from the Sklearn library in Python, coupled with hyperparameter optimization techniques 
to enhance each classifier's performance [26]. Table 3 outlines the specific parameter scenarios employed in the model-
building process. 

 
Table 3. Parameter Scenarios 

Classifier Parameter 

Random Forest RandomForestClassifier() 

Support Vector Machine 
SVC(gamma="auto",kernel='linear',degree=3,C=1, 
random_state=99) 

Decision Tree DecisionTreeClassifier(max_depth=10,criterion="gini") 
Naïve Bayes GaussianNB() 

 
Ensemble technique, specifically Gradient Boosting, is selected because it is a good technique for increasing the 

accuracy of four algorithms being used, namely Random Forest, Decision Tree, Support Vector Machine and Naïve 
Bayes. From several techniques, Gradient Boosting succeeded in obtaining good accuracy in every algorithm with good 
accuracy. 

Model evaluation was used to measure the performance of the algorithms being used, consisting of confusion 
matrix, accuracy, precision and recall. This research also compared the results of the original algorithm with the 
combined algorithms, namely Ant Colony Optimization and ensemble technique, particularly Gradient Boosting. 
 
3. Results and Discussion 

Before starting the model building phase using the NASA dataset, a comprehensive data preprocessing is 
necessary to optimize the suitability of datasets analysis. This preprocessing phase included several important steps to 
improve data integrity and facilitate practical model construction. First, a transformation stage was carried out on the 
categorical column, namely the Defective attribute, and it is converted into a numerical representation using the 
LabelEncoder() function from Sklearn. Table 4 provides an overview of the post-transformation dataset, illustrating the 
results of this preprocessing procedure. 
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Table 4. Data Transformation Results 

Loc_Blank Branch_Count … Num_Unique_Operators Loc_Total Defective 

9.0 11.0 … 21.0 41.0 1 
0.0 1.0 … 6.0 7.0 0 
18.0 31.0 … 28.0 184.0 1 
1.0 5.0 … 12.0 23.0 1 
5.0 17.0 … 15.0 96.0 1 
… … … … … … 
2.0 5.0 … 12.0 9.0 1 

 
This stage used SMOTE (Synthetic Minority Over-Sampling Technique) as a resampling technique commonly 

used in machine learning to handle class imbalance problems in datasets. SMOTE is useful for improving performance 
so as to produce a good model that increases the accuracy. SMOTE handles class imbalance, prevents overfitting, and 
improves model performance. Figure 2 shows the results of one of the datasets before and after SMOTE. 

 

 
 

a b 
Figure 2. SMOTE Results (a) before SMOTE; (b) after SMOTE 

 
This stage is the process of selecting the most relevant features from the dataset or features that will be used in 

building a prediction model which aims to improve model performance by reducing unused features. The Ant Colony 
Optimization (ACO) algorithm begins with initializing variables that are important for the next process, such as the 
number of ants (num_ants), as well as variables to track the best features and best accuracy. Figure 3 shows an 
example of a flowchart in the feature selection process, and Table 5 shows the results of selecting the best features 
from each dataset. 

 

 
Figure 3. Flowchart ACO Process 
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Table 5. Result the Best feature 

No Dataset Best Feature 

1 KC1 

Halstead_effort 

Halstead_content 

Halstead_length 

Halstead_difficulty 

Num_unique_operands 

Halstead_volume 

Loc_comments 

Loc_blank 

Branch_count 

Halstead_error_est 

2 MC1 

Call_pairs 

Num_operands 

Normalized_cylomatic_complexity 

Num_operators 

Branch_count 

Halstead_effort 

Halstead_prog_time 

Global_data_complexity 

Halstead_level 

Condition_count 

3 PC2 

Multiple_condition_count 

Edge_count 

Halstead_volume 

Parameter_count 

Halstead_effort 

Loc_executable 

Halstead_error_est 

Condition_count 

Num_unique_operators 

Cyclomatic_density 

 
This study combined four different algorithms, namely Random Forest, Support Vector Machines, Decision Trees 

and Naive Bayes. This study employed various evaluation methods to assess the algorithm performance, including 
confusion matrix, accuracy, precision, and recall. 

At this stage, ensemble technique was used, namely Gradient Boosting, because it is a good technique for 
increasing the accuracy of the four algorithms being used, namely Random Forest, Decision Tree, Support Vector 
Machine and Naïve Bayes. From several techniques, Gradient Boosting succeeded in obtaining good accuracy in every 
algorithm with good accuracy. Figure 4 shows an example diagram of the ensemble technique process using gradient 
boosting. The results of the gradient boosting can be seen in Table 6. 

 

 
Figure 4. Ensemble Technique Process 
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Table 6. Ensemble Technique Results 

No Algorithm Dataset Accuracy 

1 
Support Vector 

Machine 

KC1 0,65 

MC1 0,88 

PC2 0,91 

2 Random Forest 

KC1 0,84 

MC1 0,99 

PC2 0,97 

3 Decision Tree 

KC1 0,76 

MC1 0,98 

PC2 0,97 

4 Naïve Bayes 

KC1 0,59 

MC1 0,72 

PC2 0,83 

 
The final stage of this research was the model evaluation stage, where the model evaluation was used to measure 

the performance of the algorithms being used, namely confusion matrix, accuracy, precision and recall. This research 
also compared the results of the original algorithm with the combined algorithms, namely Ant Colony Optimization and 
ensemble technique, particularly Gradient Boosting. Table 7 shows the comparative results of the model evaluation. 

 
Table 7. Comparative Model Evaluation Results 

Algorithm Dataset 

Model Evaluation 

Original algorithm Combined algorithms 

Accuracy Precision Recall Accuracy Precision Recall 

Decision 
Tree 

KC1 0,73 0,73 0,69 0,76 0,78 0,73 

MC1 0,94 0,91 0,97 0,98 0,97 0,98 

PC2 0,95 0,94 0,97 0,96 0,97 0,96 

Random 
Forest 

KC1 0,83 0,85 0,78 0,84 0,85 0,82 

MC1 0,99 0,98 0,99 0,99 0,98 1,00 

PC2 0,98 0,97 0,99 0,97 0,97 0,98 

Support 
Vector 

Machine 

KC1 0,61 0,64 0,44 0,65 0,75 0,47 

MC1 0,79 0,77 0,81 0,88 0,84 0,93 

PC2 0,85 0,78 1,00 0,91 0,84 1,00 

Naïve 
Bayes 

KC1 0,60 0,67 0,35 0,59 0,71 0,31 

MC1 0,62 0,73 0,32 0,72 0,68 0,81 

PC2 0,81 0,84 0,77 0,83 0,83 0,83 

 
From Table 7, it can be concluded that the four algorithms obtained good accuracy after being combined with Ant 

Colony Optimization and ensemble technique. By using Ant Colony Optimization and ensemble techniques, the four 
algorithms showed a significant increase in accuracy. Random Forest algorithm achieved the highest accuracy of 0.99 
on the MC1 dataset both before and after the combination, showing its stable performance. After the combination, 
Decision Tree also showed a significant increase in accuracy, from 0.94 to 0.98 on dataset MC1, and from 0.95 to 0.96 
on dataset PC2. The Support Vector Machine algorithm experienced an increase in accuracy from 0.79 to 0.88 on the 
MC1 dataset. These results show that the combination of Ant Colony Optimization and ensemble techniques can 
improve the accuracy of the algorithms, especially on the Decision Tree algorithm with an accuracy of 0.98 on dataset 
MC1. In addition, Random Forest algorithm is declared stable because it obtained good accuracy. 

 
4. Conclusion 

The evaluation of the defect software prediction model using Random Forest, Decision Tree, Support Vector 
Machine, and Naive Bayes algorithms after being combined with Ant Colony Optimization-based feature selection and 
ensemble technique, namely Gradient Boosting, shows that the accuracy of the four algorithm models had successfully 
increased by an average of 2% to 10%. Therefore, it can be concluded that the Feature Selection and Ensemble 
technique can increase the accuracy of the four algorithms being used. 
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