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Acute Lymphoblastic Leukemia (ALL) is a common and aggressive subtype of 
leukemia that predominantly affects children. Accurate and timely diagnosis of 
ALL is critical for successful treatment, but it is hindered by the limitations of 
manual examination of peripheral blood smear images, which are prone to 
human error and inefficiency. This study proposes an improved diagnostic 
approach by integrating the EfficientNet architecture with a Support Vector 
Machine (SVM) classifier to enhance classification accuracy and address the 
performance inconsistencies of standalone EfficientNet models. Additionally, a 
novel CNN-based model with a reduced number of parameters is developed 
and evaluated. A dataset comprising 3.256 peripheral blood smear images 
across four classes (benign, early, pre and pro) was used for training and 
testing. The EfficientNet-SVM models achieved a peak accuracy of 97.35% 
using the EfficientNet-B3 architecture, surpassing previous studies. The 
improved CNN model achieved the highest accuracy of 99.18% while reducing 
parameters by 59.5% compared to the best prior models, with a negligible 
accuracy decrease of only 0.67%. These findings highlight the potential of 
combining EfficientNet with SVM and the efficiency of the improved CNN model 
for automated ALL detection, paving the way for more reliable, cost-effective, 
and scalable diagnostic tools. 

 
1. Introduction 

Blood cancer is one of the most dangerous diseases in humans. As the name implies, this cancer attacks blood 
cells in humans by changing or mutating blood cells so that the blood cells become abnormal. One of the most common 
types of blood cancer is leukemia. Leukemia is a blood cancer that attacks white blood cells in the bone marrow so that 
the white blood cells become abnormal and cause the body's immune system to decrease [1][2]. From 2003 to 2007, 
there were 717,863 cases of leukemia occurring in 185 countries. Meanwhile, in 2012 new cases of leukemia were 
found with an estimated number of 350,000 cases. By 2018, the highest cases of leukemia occurred in Australia and 
New Zealand (with age-standardized rate per 100,000 cases of 11.3 in men and 7.2 in women), North America (with 
age-standardized rate per 100,000 cases of 10 .5 in men and 7.2 in women), and continental western Europe (with age-
standardized rate per 100,000 cases of 9.6 in men and 6.0 in women). The lowest cases of leukemia occurred in West 
Africa (with age-standardized rate per 100,000 cases of 1.4 in men and 1.2 in women) [3]. 

Among the various subtypes of leukemia, acute lymphoblastic leukemia (ALL) is a type of leukemia blood cancer 
with the highest cases affecting children in various countries [1] [4]. Leukemia is more dominant in children aged under 
15 years with cases per year reaching 3 to 4 cases per 100,000 children. In addition, leukemia is more common in boys 
than girls. Currently, the standard method for diagnosing ALL involves manual examination of peripheral blood smear 
samples under a microscope by trained experts [5]. While this approach is effective, it is labor-intensive, time-
consuming, and prone to errors due to fatigue and subjective judgement, especially when dealing with large numbers 
of samples [4][6].  

To address these limitations, computerized approaches that leverage machine learning (ML) and deep learning 
(DL) gave gained traction [1][7][8]. These techniques allow for automated detection, classification, and analysis of blood 
smear images, significantly reducing reliance on manual expertise and improving diagnostic efficiency [5][9][10]. Among 
the DL methods, Convolutional Neural Networks (CNNs) have demonstrated superior performance in image processing 
tasks due to their ability to automatically learn features from images through layered structures, including input, hidden, 
and output layers [8][10][11][12][13][14]. Studies using CNN architectures such as MobileNetV2, ResNet18, and VGG16 
have achieved remarkable accuracy in ALL classification, ranging from 97% to 99.39% [1][5].  

However, despite these advancement, challenges remain [15]. One notable issues is the inconsistent 
performance of certain CNN architectures, such as EfficientNet, which, while theoretically superior, produces 
unexpectedly low accuracy (28.22%) in ALL classification tasks, as reported by [16][17]. This contradiction highlights 
the need for further research to optimize and adapt CNN architectures to the specific requirements of blood smear 
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image analysis. Additionally, support vector machines (SVMs) have proven effective in maximizing classification 
accuracy in ML, but their integration with modern CNN architectures remains underexplored in the context of ALL 
detection [18].  

Given these gaps, this study aims to enhance the performance of EfficientNet for ALL classification by integrating 
it with SVM, leveraging SVM’s robustness in classification tasks. By combining the strength of both approaches, this 
research seeks to develop a more reliable and accurate system for ALL detection. The proposed method will address 
existing challenges, including inconsistent performance and model optimization, to contribute to more effective 
diagnostic tools for healthcare practitioners.  

 

 
Figure 1.  Acute Lymphoblastic Leukemia on Peripheral Blood Smear Image. In Order from Left to Right, the 

Classes are Benign, Early, Pre, Pro 
 

2. Research Method 
2.1 Dataset 

The dataset used is the acute lymphoblastic leukemia disease dataset on the peripheral blood smear image. 

This dataset was obtained from a public source, namely the public dataset provider website www.kaggle.com with 

authors named Mehrad Aria, Mustafa Ghaderzadeh, Davood Bashash, Hassan Abolghasemi, Farkhondeh Asadi, and 

Azamossadat Hosseini [19]. This dataset was previously prepared in the bone marrow laboratory of Taleqani Hospital, 

Tehran. Data in the form of digital images of peripheral blood smears were observed microscopically with a 

magnification of 100x and photographed in JPG format as shown in Figure 1. The resolution of the image used is 

changed to a size of 224x224 or 128x128 pixels according to the architecture due to the limited specifications of the 

device used. Peripheral blood smear is a sample of broken blood cells with incomplete nuclear membranes without 

cytoplasm [20]. There are 3256 images in total and divided into 4 classes with a distribution of 504 benign class 

images, 985 early class images, 963 pre class images, and 804 pro class images [16]. In identifying the four classes 

of acute lymphoblastic leukemia, knowledge of the characteristics of each class is required. Table 1 shows the different 

features of acute lymphoblastic leukemia. 

 

Table 1. Characteristics of Each Class of Acute Lymphoblastic Leukemia 

Class Characteristics 

Benign 
Small cells about 10 – 20 nanometers in 

diameter [21] 

Early 
Medium-sized lymphoblast cells are slightly 

indented and have large nucleoli [22] 

Pre 
Lymphoblast cells are small or large with a 

round nucleus [23] [24]  

Pro 
Lymphoblast cells that are still in the basophilic 

stage with several 
Nucleoli [25][26]  

 

2.2 Model architecture  
A model was designed to identify the shape of cells in acute lymphoblastic leukemia in peripheral blood smear 

images using two CNN models. The two models are EfficientNet with SVM and Improved model. 

 

2.2.1  EfficientNet model with SVM 

EfficientNet has 8 architectures, including EfficientNetB0, EfficientNetB1, EfficientNetB2, EfficientNetB3, 

EfficientNetB4, EfficientNetB5, EfficientNetB6, and EfficientNetB7 which are distinguished by the number of 

parameters. In this research, the EfficientNet architecture was able to outperform several other transfer learning 

architectures, such as ResNet50, DenseNet-169, InceptionV3, PolyNet, and several other architectures [17]. 

However, in a study aimed at diagnosing acute lymphoblastic leukemia in peripheral blood smear images using 
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EfficientNet, the accuracy was very low, so this needs to be improved. In this study, the EfficientNet model is combined 

with SVM. All eight EfficientNet architectures were used and combined with SVM. 

EfficientNet architecture acted as feature extraction, while SVM acted as a feature classification model. 

EfficientNet architecture with SVM is depicted in Figure 2. 

 

 
Figure 2. EfficientNet with SVM Architecture 

 

2.2.2 Improved model 

Improved model is a simple CNN model that is created manually by specifying several layers. The Improved 

Model architecture uses 5 types of layers, including Conv2D, MaxPooling2D, Flatten, Dense, and Dropout. Improved 

Model Architecture is taken from one study with a different research object [27]. According to the model architecture 

depicted in Figure 3, the peripheral blood smear image with a size of 224x224x3 passes through the Conv2D layer 

for convolution process with 32 filters, 3x3 kernel size and ReLU activation.  

 

 
Figure 3. Improved Model Architecture 
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ReLU activation plays a role after the image goes through a convolution process to handle pixel values that are 
below 0 or negative and change it to 0. The output of this process is after passing through the Conv2D layer, the 
image will enter the MaxPooling2D layer with a pooling size parameter of 2x2. In this layer the convoluted image will 
undergo a process of eliminating pixels in the specified pooling area by finding the maximum value. After that, the 
output of the MaxPooling2D layer will be repeated 4 times using the Conv2D and MaxPooling2D layers with the same 
parameters. The output from the previous process then goes to the Flatten layer. In this layer the output image is 
converted into a 1- dimensional array. The array then goes to the Dense layer. This Dense layer is a Fully Connected 
layer that aims to process matrix multiplication. The Dense layer parameter used is 500 units. The output from the 
Dense layer then goes to the Dropout layer with a rate of 0.5. This Dense layer will randomly ignore neurons during 
model training to prevent overfitting. Furthermore, the output of the previous process is repeated to enter the Dense 
and Dropout layers, but in the next Dense layer, only 250 units of parameter is used. The output from that process 
then enters the Dense layer with 4 units of parameter and softmax activation. 4 units is used as the number of labels 
in the dataset, while softmax activation is used as an output classification for labels. The final result of this layer is the 
percentage probability of the predicted label being correct. 

 
2.3 Model training and testing 

The image used for the training model on the EfficientNetB0 to EfficientNetB5 architecture is 224x224 pixels, 
while the EfficientNetB6 and EfficientNetB7 architectures use 128x128 pixels. Furthermore, for the needs of training, 
testing and evaluation on each architecture, train-test split procedure is implemented on the dataset. The train-test 
split technique is used with the aim of dividing the data into training data and testing data. The training data is used to 
train the model and the testing data is used to validate and evaluate the previously trained model [28]. The image 
used for training models on all architectures is 224x224 pixels in size. 

 

2.3.1 Model EfficientNet with SVM 

In this study, the ratio of the train-test split of the dataset is 70% for the training data and 30% for the testing 
data. The train-test split method also uses the stratify parameter based on its class, aiming to divide equally for each 
class. The results obtained for the training and testing data are 2279 and 977 images respectively. Class labels are 
also converted into numbers by encoding process so that the model training can be conducted. The distribution of the 
dataset after passing through the solving process is shown in Table 2. Furthermore, the process of model training and 
testing is different for each model [29]. In the model testing process, the testing data goes through a feature extraction 
and feature classification process that has been trained so that it gets the output in the form of classification. 

 
Table 2. Dataset Split Distribution 

Class Encode Training data Testing data 

Benign 0 353 151 
Early 1 689 296 
Pre 2 674 289 
Pro 3 563 241 

Total  2279 977 

 

2.3.2 Improved model 

The training data that has been prepared previously is directly used in the training process on the improved 
model architecture. The training model process on the improved model architecture is carried out by adding a 
validation split parameter of 10% so that the training model validation accuracy can be monitored. In addition, the 
repetition of training or epochs used is 500 epochs. The best percentage of validation accuracy in an epoch is the 
training model used. In the model testing process, the testing data is directly tested using a model that has been 
trained previously so that it gets the output in the form of classification. 

 

2.4 Evaluation 

The two models that have been previously trained and tested are then evaluated by calculating the accuracy of 

each model architecture so that the accuracy value of the models created can be obtained [30]. The test result data 

or prediction data is compared with the testing data to obtain the accuracy value (acc = prediction label data/test label 

data * 100%). 

3. Results and Discussion 
3.1 Results 

The research was conducted using 2 types of models, namely the EfficientNet model with SVM and the improved 
model. The EfficientNet model with SVM used 7 types of architecture, including EfficientNetB0 with SVM, EfficientNetB1 
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with SVM, EfficientNetB2 with SVM, EfficientNetB3 with SVM, EfficientNetB4 with SVM, EfficientNetB5 with SVM, 
EfficientNetB6 with SVM, and EfficientNetB7 with SVM. The EfficientNet architecture has improved better accuracy 
results after being combined with SVM when compared to other studies that used the EfficientNet architecture and used 
a dataset of 4 classes. While the improved model architecture obtained high accuracy with quite a few parameters. The 
results of the accuracy test on the EfficientNet model with SVM and the improved model are shown in Table 3.  

 
Table 3. Comparison of EfficientNet Model with SVM and EfficientNet model 

Architecture Accuracy Resolution Parameter 

EfficientNetB0 with SVM 83,93% 224x224 4 M 
EfficientNetB1 with SVM 54,88% 224x224 6,5 M 

EfficientNetB2 with SVM 74,64% 224x224 7,7 M 

EfficientNetB3 with SVM 97,35% 224x224 10,7 M 
EfficientNetB4 with SVM 86,04% 224x224 17,6 M 
EfficientNetB5 with SVM 95,3% 224x224 28,5 M 
EfficientNetB6 with SVM 45,67% 128x128 40,9 M 
EfficientNetB7 with SVM 38,29% 128x128 64 M 

Improved Model 99,18% 224x224 8,1 M 

 
It can be seen from Table 3 that in identifying acute lymphoblastic leukemia in peripheral blood smear images, 

tthe model obtaining the highest accuracy was EfficientNetB4 architecture with SVM. As for the overall architectures, 
the highest accuracy value was found in the improved model architecture. The EfficientNet model with SVM in this study 
is a development of a research conducted by Ghaderzadeh et al. which used EfficientNet model, while the improved 
model applied the architectural model of the research conducted by Asma Maqsood et al. The EfficientNet architecture 
has obtained higher accuracy after being combined with SVM in comparison to other studies that used EfficientNet 
architecture and a dataset of 4 classes. Meanwhile, the architecture of the improved model obtains accuracy results 
that outperform most of the models in Ghaderzadeh’s study.  
 
3.2 Discussion 

The results obtained from this study indicate that acute lymphoblastic leukemia can be identified on the peripheral 
blood smear using CNN and SVM methods. This study resulted in 2 models, namely the EfficientNet model with SVM 
and the Improved model. In the first model, EfficientNet is used as an image feature extractor while SVM is used as an 
object classification. EfficientNet has 8 architectural variations which were all used in this study, including 
EfficientNetB0, EfficientNetB1, EfficientNetB2, EfficientNetB3, EfficientNetB4, EfficientNetB5, EfficientNetB6, and 
EfficientNetB7. This model shows an increase in accuracy results compared to the previous study conducted by 
Ghaderzadeh, et al., where the study resulted in an accuracy of 28.22%. Research conducted by Ghaderzadeh, et al., 
and this study used a dataset of acute lymphoblastic leukemia on peripheral blood smear images with 4 classes, namely 
benign, early, pre class, and pro. Table 4 shows the comparison of the accuracy results in this study with those of 
Ghaderzadeh et al. 

 
Table 4. Comparison of the Model in this Study with Research by Ghaderzadeh et al 

Research Architecture Accuracy Resolution Parameter 

 EfficientNetB0 with SVM 83,93% 224x224 4 M 
 EfficientNetB1 with SVM 54,88% 224x224 6,5 M 
 EfficientNetB2 with SVM 74,64% 224x224 7,7 M 
 EfficientNetB3 with SVM 97,35% 224x224 10,7 M 

This study EfficientNetB4 with SVM 86,04% 224x224 17,6 M 
 EfficientNetB5 with SVM 95,3% 224x224 28,5 M 
 EfficientNetB6 with SVM 45,67% 128x128 40,9 M 
 EfficientNetB7 with SVM 38,29% 128x128 64 M 
 Improved model 99,18% 224x224 8,1 M 

 EfficientNet 28,22% 224x224 4 M [17] 
 MobileNetV3 50.15% 224x224 5,3 M [31]  
 VGG‐19 96.32% 224x224 144 M [32]  
 Xception 96.70% 224x224 22,8 M [33]  

[16] InceptionV3 96.93% 224x224 25 M [34]  

ResNet50V2 97.85% 224x224 4,6 M [35]  
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 VGG‐16 98.01% 224x224 138 M [32]  
 NASNetLarge 98.16% 224x224 27,6 M [36]  
 InceptionResNetV2 99.54% 224x224 133 M [37]  
 DenseNet201 99.85% 224x224 20 M [38]  

 
The increase was due to the role of SVM in this study. The accuracy obtained from all EfficientNet models, , 

namely EfficientNetB0, EfficientNetB1, EfficientNetB2, EfficientNetB3, EfficientNetB4, EfficientNetB5, EfficientNetB6, 
and EfficientNetB7, combined with SVM were 83.93%, 54.88%, 74.64%, 97.35%, 86.04%, 95.3%, 45.67%, and 38.29% 
respectively. From each of these architectures, the highest accuracy result was obtained from the EfficientNetB3 
architecture, which is 97.35%. 

Improved model in this study obtained an accuracy of 99.18%. These results outperformed most of the models 
in the Ghaderzadeh’s study and almost equaled the two models, namely InceptionResNetV2 and DenseNet101. The 
improved model had only 8.1 million parameters, but InceptionResNetV2 and DenseNet101 had much more parameters 
about 133 million and 20 million respectively. The improved model reduced the number of parameters by about 59.5% 
less than the best model in the previous study, with a decrease in accuracy of only 0.67%. The reduced number of 
parameters in the improved CNN model was achieved by simplifying its architecture while maintaining critical features 
essential for classification. By employing fewer layers and carefully selecting operations such as smaller convolutional 
filters, efficient pooling strategies, and dropout layers, the model minimizes computational overhead. The design also 
focuses on removing redundant features and emphasizing the most significant ones, resulting in optimized parameter 
usage. This streamlined approach avoids overfitting, as evidenced by the slight decrease in accuracy (0.67%) compared 
to models with higher parameter counts like DenseNet101, while achieving significant resource efficiency.  

 
4. Conclusion 

This research aimed to improve the classification accuracy of Acute Lymphoblastic Leukemia (ALL) detection 
from peripheral blood smear images by integrating the EfficientNet architecture with a Support Vector Machine (SVM) 
classifier and developing an improved CNN model with fewer parameters. The proposed models address the challenges 
of performance inconsistencies in existing EfficientNet models and the need for resource-efficient architectures.  

The EfficientNet-SVM combination demonstrated significant improvements, achieving a peak accuracy of 97.35% 
using the EfficientNet-B3 architecture, which outperformed similar models in prior studies. Furthermore, the improved 
CNN model achieved the highest accuracy of 99.18%, with a substantial 59.5% reduction in parameters compared to 
state-of-the-art models, demonstrating its computational efficiency and practical applicability. The streamlined design 
of the improved CNN model effectively balanced parameter optimization and high classification accuracy, making it 
suitable for deployment in resource-constrained environments.  

These findings imply that integrating EfficientNet with SVM can enhance feature classification, while architectural 
refinements in CNN models can reduce computational demands without compromising the performance. Future 
research should explore deploying these models in real-world clinical settings and enhancing generalizability across 
diverse datasets to further validate and extend their applicability.  
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