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The growing number of smartphones, particularly Android powered 
ones, has increased public awareness of the security concerns 
posed by malware and viruses. While machine learning models have 
been studied for malware prediction in this field, methods for precise 
identification and classification still require improvement for the 
perfect detection of malwares and minimizing the cracks on machine 
learning based classification. Detection accuracy that ranges from 
93% to 95% has been observed in prior research, indicates room for 
improvement.  In order to maximize the hyperparameters, this paper 
suggests improving the Random Forest method by introducing the 
grid search algorithm which isn’t present in previous studies. A 
significant increase in classification accuracy is the main aim of the 
research. We exhibit an outstanding 99% accuracy rate in detecting 
malware contaminated programs, demonstrating the significance of 
our technique. The proposed method can be seen as a huge 
improvement over existing models, achieving near perfection in 
detection, in contrast to which typically obtained by previous models 
with the accuracy rate of 95% max on the same dataset. Our 
approach achieves such high accuracy and provides a novel remedy 
for the limits of the Android based platforms, particularly when 
program processing resources are limited. This study confirms the 
effectiveness of our improved Random Forest algorithm, points to a 
paradigm shift in malware detection, and heightened cybersecurity 
measures for the rapidly growing smartphone market. 

 
1. Introduction 

This increasingly modern era has made almost all of the internet users choose smartphones which are easier 
and more compact to use when surfing the internet. With the use of smartphones becoming more widespread every 
year, the targeting of cyber criminal acts will also increase for these platforms. One of the most significant problems 
facing the internet users today is malware [1]. Malware is a broad term for viruses, worms, trojans, and other malicious 
software programs that can damage data or access important data illegally [2]. 

The type of smartphone that is very popular today is a smartphone deployed with the Android operating system 
[3]. Android as an operating system has the advantages, such as open source code, multitasking capabilities, ease of 
use, and a very large number of applications supported. The nature of Android as an open source operating system 
and the broad use of it makes this operating system a promising target in the world of cyber security on the criminal 
side [4]. Criminal attacks in the cyber domain often occur, especially through the method of spreading malware via the 
internet [5]. 

To deal with malware threats, antivirus is now the most commonly used method. On desktop computers, the 
antivirus will real-time track application data using the latest malware signature files downloaded from the antivirus 
database. However, implementing the same approach on smartphones is not easy and effective due to significant 
computational overhead [6]. Using traditional antivirus which only checks the signature and hash value of a file is also 
increasingly ineffective and considered exhausting in terms of research due to the existence of new malwares that are 
continuously developing. 

The things mentioned above encouraged the authors to propose a more efficient approach for detecting malware 
threats. With the increasing availability of large datasets and increasingly affordable hardware, the application of deep 
learning in various factors can become easier to do [7]. Machine learning algorithms seem to offer a solution that can 
solve the problem of the increasing number of malware, especially using traditional machine learning algorithms. 
Machine learning algorithms in the form of deep learning neural networks offer more features in their predictions, but 
are not suitable for application in predicting malware on devices with small resources available, such as smartphones, 

https://kinetik.umm.ac.id/index.php/kinetik/article/view/1944
http://kinetik.umm.ac.id/
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1457736067&1&&2016
http://kinetik.umm.ac.id/
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1457736067&1&&2016
http://kinetik.umm.ac.id
https://kinetik.umm.ac.id/index.php/kinetik/article/view/1944
https://crossmark.crossref.org/dialog/?doi=10.22219/kinetik.v9i2.1944&domain=pdf


Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control 
 

© 2024 The Authors. Published by Universitas Muhammadiyah Malang 
This is an open access article under the CC BY NC SA license (https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

 

 

                    

 

174 

because of their large resource requirements [8]. Therefore, in this research, the authors used a traditional machine 
learning algorithm which is lighter in its development and implementation.  

Previously, as seen in Table 1 , a research by Odat et al. (2023) [9] has discussed a model training method that 
applies a feature coexistence method that allows the model to discover hidden relationships between various features 
in a dataset [9]. This research produced a high-accuracy model that can predict the DREBIN dataset with an accuracy 
as high as 95%. Previous research carried out by Arora et al. (2019) [10] applied 'PermPair' which is a detection model 
with the aim of identifying permission pairs, where if a pair of permissions are combined in a certain pattern, it can 
indicate the behavior of an application infected with malware. This allows the model to identify potential threats more 
accurately. A research by Rathore et al. (2021) [11] compared the prediction accuracy of traditional machine learning 
models with deep neural network models. Neural network is a model that imitates the workings of neural networks in 
the brain [12]. Their evaluation was also carried out on the same dataset and showed that the traditional random forest 
classifier machine learning model outperformed other models with an accuracy of 96.9%. 

Considering the high level of accuracy obtained by Rathore et al. (2021) [11] using a random forest machine 
learning model, this research aims to analyze the hyperparameter tuning that can be carried out on the model in order 
to achieve optimality. We believe that with the right hyperparameter settings, the model can more easily detect hidden 
relationships between the features available in the dataset. Using these three previous researches [9] [10] [11] as the 
main references for this research, we aim to perfect the accuracy of the previous researches with the proposed method 
that would solve the problem that the previous research can't improve anymore: achieving better accuracy within the 
near-perfect prediction accuracy range and eliminate even the possibility of a tiny bit of imperfection that may occur, 
potentially providing a security breach if the study were ever to be used in future programs. To optimize the 
hyperparameters and potentially gain more accuracy, we believe, using grid searching algorithm would help the model 
in finding the perfect match of hyperparameters combination in no time. 
 

 
Figure 1. Research Methods 

 
Figure 1 shows the phases and research flow starting from data-splitting, data balancing, determining 

hyperparameters, model training, to evaluation. The dataset was divided to create two types of dataset, which are the 
training set and the validation set. This research divides the dataset into two sets with a ratio of 4:1 for the training set 
and validation set respectively. Dataset cleaning also needs to be done because there is non-uniform data, such as 
there was a lack of data in several rows. Therefore, empty data must be marked as not available in the dataframe. The 
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dataset consists of recordings of malware behavior that have been classified, this makes this dataset a dataset resulting 
from Dynamic Analysis which is an analysis of the behavior of malware [5]. 
 

Table 1. Comparison Table of Previous Studies using the Same Dataset 

Research Dataset 
Accuracy on The Drebin 

Dataset 
Area of Focus 

[9] 
DREBIN & 
MalGenom 

95% 
The influence of feature coexistence in a dataset on 

machine learning model predictions 

[10] 
DREBIN & 
MalGenom 

95% 
The influence of the permission pair feature in the 
dataset on the prediction results of the machine 

learning model 

[11] DREBIN 96.6% 
Comparison of the accuracy of traditional machine 

learning models with neural network models 

 
2. Research Method 
2.1 Dataset 

The dataset used to train the model in this research was obtained from the open repository site Figshare [13]. 
The dataset consists of binary values for the 215 feature categories extracted from 15,036 applications where the 
application set is divided into 5,560 malware applications from the DREBIN project [14] and 9,476 secure applications. 
This dataset has a classification imbalance of 13% in the complete dataset where this imbalance can influence and 
provide bias in determining decisions in future predictions [15]. A model trained on an imbalanced dataset will only be 
good at predicting the results of the dominant classifications appearing in the dataset, but poor at predicting 
classifications that are a minority in it. Therefore, data balancing techniques must be implemented to prevent these 
problems. 

The attributes available in this dataset are in the form of API call signatures, which are signatures of various 
methods or functions available in the Android API. This value represents the action or operation that can be performed 
by a program [16]. This API call signature determines how the application interacts with various components of the 
Android system. The next are manifest permissions, which are the permissions declared in the "AndroidManifest.xml" 
file in an Android application program which determines the access rights needed by the application to perform certain 
operations or access certain features [17]. This permission regulates the application's security and privacy factors when 
using the program. Then, the last one is Intent, which refers to the mechanism used for communication between 
components and applications in the Android operating system [18]. 

The binary coding of 214 of the 215 available categories indicates the level of Android system access required 
by an Android application program. The more access permissions given to a program, the more freedom the program 
has to make changes to the device [17]. In this dataset there is a binary indicator of API access, where the encoding 
will show a value of 1 if the program calls a particular Android API, and 0 if it does not. Apart from that, this dataset 
provides an encoding value of 1 or 0 for each condition requiring access based on manifest permission and/or command 
signature. 

 
2.2 Data Pre-processing 

Data splitting is needed to separate the dataset and produce training data and testing data that can be used in 
training machine learning models and validating models. This time we use training data to test data ratio of 4:1. In other 
words, 80% of the data is allocated for training the model, and 20% is allocated for testing the model that has been 
trained. As previously discussed, the dataset used this time has an imbalance in the type of classification results, where 
the classification of safe programs is more dominant than the classification of programs labeled as malware. Therefore, 
a data balancing method must be applied. 

Oversampling is a technique used to overcome data imbalance problems. One form or method of oversampling 
that can be used is SMOTE, which is a popular algorithm, and is often used to overcome data imbalances. SMOTE 
works by creating artificial samples from minority classes through interpolation of previously existing data [19]. This 
method will balance both sides of the classification as can be seen in Figure 2 and Figure 3 and make the model able 
to predict both sides of the classification well without any prediction bias. 
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Figure 2. Class Balance Before SMOTE 

 

 
Figure 3. Class Balance After SMOTE 

 
2.3 Machine Learning Model Training Design 

As discussed previously, using models that involve neural network methods or other modern methods will only 
slow down and increase the use of resources on most smartphone hardware. The use of traditional machine learning 
models will be more profitable in terms of processing power and implementation effectiveness on resource-limited 
hardware. Therefore, the machine learning model used in this research is a model in the form of a classifier called 
'Random Forest Classifier', where this classifier, according to [11], is a model that is relatively light to run and easy to 
retrain if the data develops at any time. The classifier training method used in this research is integrated with the grid 
search algorithm, using the 'GridSearchCV' library. This library will carry out training and validation on training data 
based on all combinations of hyperparameters provided. That way, the model can be trained by looking for the best 
hyperparameters that can be applied in training [20], this is expected to produce a model that can predict the testing 
data well. The hyperparameters used in this research are arranged in a grid consisting of 'n_estimators', 'max_depth', 
'max_leaf_nodes', and 'criterion'. 

 
Table 2. Hyperparameter Table 

Hyperparameter Value 

‘n_estimators’ [100, 200, 300] 
‘max_depth’ [None, 5, 10] 

‘max_leaf_nodes’ [100, 500, 1000, None] 
‘citerion’ [gini, entropy] 

 
‘n_estimators’ determines the number of trees in the random forest, which in the Table 2, there are three values 

provided. The model will be trained and evaluated with each of these values to determine the best number of estimators 
for the given data. ‘max_depth’ sets the maximum depth of each decision tree in the model. Higher depth allows the 

https://creativecommons.org/licenses/by-nc-sa/4.0/


Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control 
 
 

Cite: L. Hakim, Z. Sari, A. R. Aristyo, and S. Pangestu, “Optimzing Android Program Malware Classification Using GridSearchCV Optimized Random 
Forest”, KINETIK, vol. 9, no. 2, May 2024. Retrieved from https://kinetik.umm.ac.id/index.php/kinetik/article/view/1944 
 
 
 
 
 

 
 

  

  
 

177 

model to capture more complex correlations in the data, but also increases the risk of overfitting, i.e. a model's great 
ability at predicting the training set, but poor at predicting the validation set. The value of None in this parameter specifies 
that the maximum depth is not limited. Next, the 'max_leaf_nodes' value is used to control the maximum number of 
leaves allowed in each decision tree in the random forest model. This can help the model in controlling the complexity 
and generalization of the tree. The value of this parameter determines the minimum number of samples required to split 
the nodes during training. The hyperparameter explanations above are explained and can be found in previous research 
by Yokoyama et al. (2020) [21]. Lastly 'criterion', this parameter defines the function used to measure the quality of 
splitting in the random forest. This parameter can be one of the two options 'gini' or 'entropy'. 'gini' is a form of the Gini 
impurity criterion, while 'entropy' refers to the information gain criterion. Equation 1 and Equation 2 are the formula for 
measuring Gini index and Entropy impurity respectively [22]. 
 

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑃(𝑌′ = 𝑘), 𝑌′ ⊆

𝐾

𝑘=1

𝑌 (1) 

  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ − 𝑃(𝑌′ = 𝑘)𝑙𝑜𝑔2. 𝑃(𝑌′ = 𝑘),

𝐾

𝑘=1

𝑌′ ⊆ 𝑌 (2) 

 
The Gini impurity criterion aims to find features that make up the purest subset of data. A lower Gini impurity 

index value indicates better class cleavage in the resulting cleavage. Meanwhile, entropy measurements aim to find 
features that provide a more even distribution of classes between subsets of data. Entropy measures irregularity or 
randomness in data. The more random or irregular a subset of data is, the higher the entropy value. These criteria help 
determine the optimal features that can be split at each node. 

 
2.4 Testing Scenarios 

In evaluating the performance of the classifier to distinguish between safe and malicious Android applications, 
we can use formulas and metrics such as: True Positive (TP) which represents the number of correctly identified safe 
Android applications, True Negative (TN) which represents the number of malicious Android applications correctly 
identified, False Positive (FP) representing the number of malicious Android applications that were incorrectly identified, 
and False Negative (FN) representing the number of safe Android applications that were incorrectly identified. From the 
metrics obtained above, we can calculate the accuracy score of a model's prediction results. The resulting accuracy is 
a metric that measures the overall correctness of the classifier's predictions. The accuracy score can be calculated 
using the formula in Equation 3 [22] [23] [24]. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝𝑖 + 𝑡𝑛𝑖

𝑡𝑝𝑖 + 𝑡𝑛𝑖 + 𝑓𝑝𝑖 + 𝑓𝑛𝑖

 (3) 

 
Apart from the accuracy, the precision score (P) can also be taken into account. Precision is a metric that shows 

the proportion of secure applications correctly identified out of all applications classified as secure. Recall (R) is a metric 
that shows the proportion of correctly identified secure applications out of all truly secure applications. F1 Score is a 
metric that combines precision and recall to provide a comprehensive evaluation of classifier performance. Precision, 
Recall, and F1 Score metrics can be calculated using Equation 4, 5, and 6 respectively [25] [23] [24]. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4) 

  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 

  

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅
 (6) 

 
3. Results and Discussion 
3.1 Testing Scenarios 

After getting the required dataset from [13], as explained in the data pre-processing section, a 4:1 data split will 
be required, where 80% of the data will be used in model training, while the 20% will be the testing data to evaluate the 
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results of the model training. The dataset that has been divided certainly has an imbalance between the two 
classifications. Therefore, it is necessary to apply data balancing using the SMOTE oversampling method. 

 
Table 3. Class Imbalance Contained in the Dataset 

Classification Data Counts 

Benign 9476 
Suspicious 5560 

 
Table 4. Classification balance after SMOTE implementation 

Classification Data Counts 

Benign 7546 
Suspicious 7546 

 
Table 3 shows that there is a data difference of 58.69%, which of course will affect the bias of the model's 

predictions on the testing data and make the model have the potential to experience overfitting and biased prediction. 
After data balancing, as can be seen in Table 4, the data can be directly consumed by the model. Before the data is 
consumed by the model, we must find the most optimal hyperparameters to use in this research. Therefore, automated 
hyperparameter tuning is applied using the GridSearchCV library. As can be seen previously in Table 2, all the 
hyperparameters are registered in the hyperparameter grid which will later be used as a parameter in the GridSearchCV 
function. 

 
3.2 Hyperparameter Selection 

Next, we will search for the best hyperparameters for the trained model. With the hyperparameter arrangement 
presented in Table 2, 72 hyperparameter combinations will be produced that can be applied to the random forest model. 
Meaning that 72 models will be produced from this process, and the best one will be taken as the victor. The grid search 
algorithm will be very helpful for automatically testing that many parameters because based on the data obtained from 
this research, doing a grid search with as many hyperparameters as has been mentioned takes approximately 15 
minutes on the Google Colaboratory platform, which if done manually, will take longer, hence the potential to increase 
computing costs. 

From the grid search that was carried out previously, the best hyperparameters that were obtained can be applied 
in this study case. 

 
Table 5. The Best Combination of Hyperparameters 

Hyperparameter Value 

‘n_estimators’ 200 
‘max_depth’ None 

‘max_leaf_nodes’ None 
‘citerion’ Entropy 

 
Table 5 presents data in the form of hyperparameters and their best values to apply in the model. Where 

‘n_estimators’ is assigned a value of 200, ‘max_depth’ has no value, ‘max_leaf_nodes’ also has no value, and ‘criterion’ 
uses an entropy measurement. Furthermore, data can be drawn from the model with specific hyperparameters, enabling 
the model to achieve a prediction accuracy of 99%, a perfect score, needless to say. Apart from that, the data that has 
been taken from the grid search results also stores hyperparameter configurations that have the accuracy following the 
best hyperparameter combinations. 

 
Table 6. The 9 Highest Hyperparameter Combinations Following the Best 

Rank Hyperparameter Accuracy 

2 {‘criterion’: 'entropy', ‘max_depth’: None, 
‘max_leaf_nodes’: None, ‘n_estimators’: 300} 

0.9880072331825541 

3 {‘criterion’: 'entropy', ‘max_depth’: None, 
‘max_leaf_nodes’: 1000, ‘n_estimators’: 300} 

0.988007211231891 

4 {‘criterion’: 'gini', ‘max_depth’: None, 
‘max_leaf_nodes’: 1000, ‘n_estimators’: 200} 

0.9880071673305645 

5 {‘criterion’: 'gini', ‘max_depth’: None, 
‘max_leaf_nodes’: None, ‘n_estimators’: 200} 

0.9879410299821915 

https://creativecommons.org/licenses/by-nc-sa/4.0/


Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control 
 
 

Cite: L. Hakim, Z. Sari, A. R. Aristyo, and S. Pangestu, “Optimzing Android Program Malware Classification Using GridSearchCV Optimized Random 
Forest”, KINETIK, vol. 9, no. 2, May 2024. Retrieved from https://kinetik.umm.ac.id/index.php/kinetik/article/view/1944 
 
 
 
 
 

 
 

  

  
 

179 

6 {‘criterion’: 'entropy', ‘max_depth’: None, 
‘max_leaf_nodes’: 1000, ‘n_estimators’: 100} 

0.9879409641302017 

7 {‘criterion’: 'gini', ‘max_depth’: None, 
‘max_leaf_nodes’: None, ‘n_estimators’: 300} 

0.9879409202288751 

8 {‘criterion’: 'entropy', ‘max_depth’: None, 
‘max_leaf_nodes’: 1000, ‘n_estimators’: 200} 

0.987874695077849 

9 {‘criterion’: 'entropy', ‘max_depth’: None, 
‘max_leaf_nodes’: None, ‘n_estimators’: 100} 

0.9875434815200659 

10 {‘criterion’: 'gini', ‘max_depth’: None, 
‘max_leaf_nodes’: 1000, ‘n_estimators’: 300} 

0.9874109214646974 

 
As presented in Table 6, you can see 9 of the hyperparameter combinations with the highest accuracy following 

the best combinations. Overall, it can be noticed that the hyperparameter type ‘max_depth’ is strongly biased towards 
unconstrained values, while the other hyperparameters vary greatly. It seems that limiting the depth of the decision tree 
in the random forest model in this study will only reduce the accuracy of the model's predictions on test data. This is 
proven in the combination found at rank 23rd, which starts applying a 'max_depth' value of 10. This combination gets 
an accuracy score of 97% and consistently decreases to 96% in the combination ranked 47th, where throughout the 
sequence, everything is identical and uses 10 as the value of 'max_depth'. In other words, there is a degradation of 
accuracy of 2-3% by limiting the depth of the decision tree to 10 levels of depth. Furthermore, the combination of ratings 
48th to 72nd, which all limit the 'max_depth' value to 5, experienced a decrease in accuracy of 6%. Note that the same 
consistent results can be replicated again by using the 'random_state' parameter with a value of zero. This of course 
will not affect the results greatly, but it will help the research to be easily validated and replicated accurately in the future 
studies. 
 
3.3 Feature Importance Similarities From Previous Study 

The machine learning model certainly has reasons why a program can be categorized as malware or not. Figure 
4 is a by-product of the research, which presents data in the form of a bar chart for 30 features which are the most 
influential in determining program classification. It can be seen that the highest features are occupied by manifest 
permission for sending short message services and detecting the status of smartphone information, where this manifest 
permission is considered dangerous. This is in line with findings in previous research [10]. 
 

 
Figure 4. 30 Most Influential Dataset Features According to the Model 
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4. Conclusion 
Optimizing the hyperparameters of the random forest machine learning model by utilizing the grid search 

algorithm in predicting malware program classification can increase the prediction accuracy on test data by 3% to 6% 
from the state-of-the-art model. The prediction accuracy is 99%, obtained from applying the best combination of 
hyperparameters that have been tested using the GridSearchCV library in Python with the provisions of 'criterion' using 
entropy measurements, 'max_depth' and 'max_leaf_nodes' which are not limited, and 'n_estimators' with a value of 300. 
It should also be noted that the limitation act of 'max_depth', which is the depth of the decision tree in the random forest 
model, will only reduce the accuracy of the model's predictions on test data by 2% to 6%. Further research of this 
method implementation can be broad and variative, it can be developed into pre-market application testing inside a 
development cycle, or even implemented in an Android endpoint to research the resource used realistically. 
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