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Indonesia possesses considerable capacity for renewable energy as a result 
of its plentiful natural resources, including geothermal, solar, wind, hydro, and 
biomass. However, the nation's existing energy composition is predominantly 
dependent on non-renewable resources, with fossil fuels constituting 
approximately 95% of its overall energy consumption. Recently, Indonesia has 
made notable advancements in augmenting its renewable energy output in 
years. Nevertheless, there is still obscurity about the identification of suitable 
regions for the installation of solar power plants in order to facilitate the 
development of solar energy. This study employed a methodology to 
investigate and forecast the solar energy potential in Sumatra, Indonesia. The 
data utilized consists of MERRA-2 reanalyzing information spanning from 1980 
to 2019, collected on a daily basis. The data is analyzed and shown using 
Inverse Distance Weighting and ARIMA techniques to visualize the spatial 
variation of solar energy potential in Sumatra. ARIMA is employed as a 
supplementary method to the interpolation technique in order to get long-term 
projections of solar energy potential for the period spanning from 2020 to 2029. 
The analysis of the best interpolation method for estimating solar energy 
potential reveals that the IDW approach with a power of 5 yields the most 
accurate findings, with an RMSE value of 28.33. For long-term prediction of 
solar potential in Aceh province, the ARIMA (1,0,0) method is recommended, 
which has a MAPE value of 0.0219. The findings indicated that Lampung and 
Bengkulu frequently experience the distribution of solar energy with an intensity 
ranging from 1400 to 1450 kWh. In addition, the forecast of the potential over 
Sumatera Island yielded encouraging results using the GAM model, with a root 
mean square error rate of 0.05103. 

 
1. Introduction 

Indonesia has abundant potential for clean and environmentally-benign renewable energy sources, such as wind, 
sun, biomass, geothermal, and hydro (including small hydro) [1], [2], [3]. Solar power plants (PLTS) might be viewed as 
a feasible alternative solution given the underutilization of various renewable energy sources and the absence of 
affordable electricity access in some parts of Indonesia due to the unavailability of PLN power grid [1]. Energy is in 
greater demand, especially in the area of electrical power. The three main energy sources used by Indonesia are coal, 
natural gas, and petroleum. Indonesia's energy grid would be greatly impacted by the long-term use of fossil fuels for 
conventional electricity generation [4]. Under this scenario, Indonesia will become a net importer of fossil fuels and have 
easier access to fossil energy [5].  Due to this circumstance, fossil fuel availability will rise and Indonesia will become a 
net importer of fossil fuels.  The development and application of renewable energy sources are potential steps to reduce 
imports [2], [6], [7]. 

Indonesia, as a tropical country, has a significant quantity of solar energy potential, thanks to its average daily 
solar irradiation of 12 hours. According to data from the Institute for Essential Services Reform (IESR), Indonesia has 
an estimated solar energy capacity of 207,898 MW, which is comparable to generating 4.8 kWh per day [8], [9].  The 
IESR study conducted in Sumatra found that the solar energy capacity in Sumatra is 68,576 MW. The maximum 
capacity of South Sumatra is 17,233 MW. The electricity capacity of several regions in Indonesia are as follows: North 
Sumatra has a capacity of 11,851 MW, Jambi has a capacity of 8,674 MW, Aceh has a capacity of 7,881 MW, Riau 
Islands has a capacity of 7,763 MW, Riau has a capacity of 7,753 MW, West Sumatra has a capacity of 5,898 MW, 
Bengkulu has a capacity of 3,475 MW, Bangka Belitung Islands has a capacity of 2,810 MW, and Lampung has a 
capacity of 2,238 MW. Prior to assessing the energy output of a solar power plant in Sumatra, it is imperative to get this 
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data in advance through either direct measurement or use of satellite data, taking into account the acknowledged solar 
energy potential in the area. Regrettably, there is often a lack of direct observational data for long-term data sets. 
Afterwards, satellite data is used to estimate solar energy output data, although there are limitations regarding the time 
period provided by satellite data. Another alternative that could be utilized is to once again make use of reanalysis data.  

Reanalysis data is often used to simulate energy output, especially in the context of solar power plants. The 
Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) dataset, provided by NASA, 
is widely used for reanalysis purposes. The MERRA-2 dataset, extensively utilized in previous studies, has been 
documented by [10] and [11]. The BMKG dataset has benefited from the utilization of this data, as it closely resembles 
observed data and has an R2 value ranging from 0.59 to 0.78.  The estimation strategy employed in this study involves 
the utilization of spatial interpolation techniques [12], [13], [14]. Spatial interpolation can be employed to obtain 
meteorological estimation data at randomly dispersed location points. The Inverse Distance Weighting (IDW) method 
has been widely utilized [15], [16], [17], [18], [19].  Studies conducted by [17], [20] and [17] have showed that the IDW 
interpolation method produces more precise outcomes when compared to other methodologies. The purpose of utilizing 
the Inverse Distance Weighting (IDW) technique is to visually depict the spatial distribution of potential solar energy 
generation across the Sumatra region. The MERRA-2 reanalysis data is included in the time series data because of its 
temporal characteristics. Time series data can be employed to predict an event at a particular point in time. ARIMA, 
which stands for Auto Regressive Integrated Moving Average, is a widely used technique for modeling time series data 
[8], [21], [22], [23]. The ARIMA model will be employed to predict future solar energy production using existing data [21], 
[24]. This projection can be used as a reference point for comprehending the solar energy capacity in Sumatra.   

 
2. Research Method 

The research areas in this study are 10 provinces in Sumatra, Indonesia. The electrification data used is data in 
the period 1980-2019 collected from the https://www.renewables.ninja/ platform, the coordinate points used according 
to the points of climatology observation stations in each province. The raw data obtained is 350641 data per province 
from the period 01-01-1980 00:00 to 31 December 2019 23:00. The electrification data obtained in the proprietary format 
data .csv, which is a raw record. The data contains time, electricity, irradiance direct, diffuse irradiance and temperature.  
Data is collected based on province, time, and electricity. Furthermore, to produce a map of annual distribution of solar 
energy, the electrification data was collected and accumulated for a year. Then, the solar energy electrification data is 
spatially analyzed using R software, in this case Inverse Distance Weighting (IDW) interpolation method was used to 
produce the annual distribution. IDW is a method used to analyze geo-statistics and interpolate the variable values used 
based on the sample data, taken at random locations or points. This study also used ARIMA method to predict future 
energy capacity and Generalized Additive Model (GAM) [25], [26], [27], [28] to determine the distribution of solar energy 
capacity forecasts [26], [27], [29], [30]. This study will utilize the entire data collected from Sumatera Island. Sumatra 
Island is situated at coordinates 6°N-6°S and 95°E-105°E, in terms of its geographical location. Sumatra spans an area 
of 473,481 square kilometers and is divided into 10 provinces: Aceh, North Sumatra, West Sumatra, Riau, Jambi, South 
Sumatra, Bengkulu, Lampung, Bangka Belitung Islands, and Riau Islands. The mainland of Sumatra Island exhibits a 
diverse geography, with mountains, hills, and lowlands. Sumatra Island is situated in a region characterized by a tropical 
climate. For data collection, this research used documentation, which involved retrieving information pertaining to the 
data by reviewing written reports containing numerical or informational content. Data collection is conducted indirectly 
through the retrieval of metadata from the Renewable Ninja platform. To receive the data, you need to input the 
coordinates of climatological stations for each province and specify the desired data year for download. The dataset 
used in this study consists of data acquired by the NASA MERRA-2 satellite between the years 1980 and 2020. 
 
2.1 Spatial Interpolation (Inverse Distance Weighting) 

Interpolation is the method of estimating a value at a non-sample point by using the values of neighboring sample 
points. IDW interpolation is a method used to calculate the cell values by assigning the linear weights based on a set 
of sample points. The Equation 1 presents the general formula for IDW interpolation. 
 

𝑢(𝑥) =  ∑
𝑤𝑖(𝑥)𝑢𝑖

∑ 𝑤𝑗(𝑥)𝑁
𝑗=0

𝑁

𝑖=0

 (1) 

 
Where Ui = u(xi) and I = 0.1, ..... N, N = number of dots, p = power, when real, positive. Then, the weight is the reverse 
distance function. The closer the distance between the sample point and the block to be estimated, the greater the 
weight, generally calculated by the general Equation 2. 
 

𝑤𝑖(𝑥) =  
1

𝑑(𝑥, 𝑥𝑖)
𝑝
 (2) 
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Where X = the point you want to interpolate; Xi = known point; d = distance point x to xi. 
 

Figure 1 illustrates the processing flow of time series in this investigation. Spatial interpolation is utilized to 
estimate the spatial variability of the continents based on data acquired from specific sample points. Interpolation is the 
method used to estimate the value at a non-sample location by considering the values of the neighboring sampled 
points [20], [31], [32]. Accurate spatial analysis cannot be performed without including this interpolation step. In the field 
of cartography, interpolation refers to the method of approximating values in regions with lack of sampling or 
measurement data, aiming to create a map or spreading values across the entire mapped region. There are two 
assumptions associated with spatial interpolation: first, the data attributes are continuous in space, and second, these 
attributes have a spatial relationship [33], [34]. The three methods that often employed interpolation techniques for 
representing the spatial distribution of point data are Inverse Distance Weighting (IDW), Spline, and Kriging. Various 
techniques will yield distinct results. The IDW interpolation method will be employed in this study. The spatial 
interpolation technique in this study is conducted using the R Studio software. 
 

 
Figure 1. Research Flow Diagram: Describing the Process of How the Forecasting can be Produced Properly 

 
2.2 ARIMA  

The raw data obtained is 350,641 data per province from the period 01-01-1980 00:00 to December 31 2019 
23:00. Data is obtained in data format with extension .csv, which is a raw record. The identification for each column of 
the table were as follows: column 1 is time (time of year, month, date and time according to UTC time); column 2 (time 
of year, month, date and time according to Asian/Jakarta time); column 3 (potential data (electricity) in kW units); column 
4= irradiance direct (solar radiation in units of (kW/h/m2)); column 5 = irradiance diffuse (unit of solar radiation 
(kW/h/m2)) and column 6 = temperature (unit of oC). Time series data analysis is used to perform forecasting using the 
ARIMA method. The steps in this forecasting are: 
1. Model identification is done to see the significance of autocorrelation and data stationarity, whether the process of 

transformation or differencing occurs. The ACF and PACF plots are used to determine the p and q order of the 
ARIMA model (p, d, q).  

2. Parameter Estimation is carried out against the model with the value of the alleged parameter that is significant. 
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3. The formation of a time series model is an iterative procedure preceded by the identification of the model and the 
estimating of parameters. Furthermore, it is necessary to check the adequacy of the model by checking whether 
the model assumptions have been met. 

4. Forecasting: After going through the three stages above, the last stage of the time series analysis is forecasting.  
Forecasting is carried out for each province as well as evaluating the models with RMSE and MAPE, and followed 
by conducting an annual forecast of solar energy capacity for the period 2020 - 2029 using the best model. 
 

Prior to applying the IDW approach to solar energy data interpolation based on the measurements made at the 
Sumatran climatological observation station. The data set used in this study contains annual averages for the period 
1980-2019. Data is stored as Spatial Points Data Frame and modelled using Generalized Additive Model (GAM). It is 
an extension of the Generalized Linear Model (GLM) to replace the linear function jp=1jXj with the additional function 

of∑ =  𝛽𝑗𝐾𝑗
𝑝

𝑗
. GAM generalizes ∑ =  𝑓𝑗(𝑋𝑗) 

𝑝

𝑗
the additive model into an exponential distribution. In general, GAM uses 

a smoothing curve to model the relationship between solar energy potential (response variable) and the year variable 
which in this case is called prediction variable. Broadly speaking, it can be said that GAM is used to see forecasts of 
solar energy potential in each province in Sumatra. 
 
3. Results and Discussion 
3.1 Potential Distribution 

The results obtained from the IDW spatial interpolation method provide a thorough depiction of the data related 
to the distribution map. The values of the mapping distribution on Sumatra's annual energy power production vary. The 
range of values at each location is shown by a color gradient that goes from light to dark. Strong potential is shown by 
regions with brilliant colors, whereas weak potential is indicated by parts with faded hues. The study evaluated the 
interpolation results using power parameters with integer values 1, 2, 3, 4, and 5 [32], [35]. Finding the lowest RMSE 
value computed for each power level will help define the best IDW model, according to this evaluation. With a rating of 
996.85, the Riau Islands Province demonstrated the lowest potential for renewable energy in Sumatra during the course 
of the observation period. On the other hand, the Lampung Province, with a rating of 1468, shown the most potential. 
Over 39 years, Sumatra's potential for renewable energy has increased by 2.46%. The 39-year observation period's 
descriptive data are shown in Table 1. Over a 39-year period, Lampung Province showed the highest middle and 
average values. 

 
Table 1 . RMSE Value Result from IDW Interpolation 

Power RMSE 

1 32.57968 
2 31.40251 
3 30.25209 
4 29.24624 
5 28.33074 

 
The IDW model with 5 power parameters has the lowest RMSE, measuring 28.33074, based on the RMSE value 

shown in Table 1. A model that generates more exact and accurate results has a lower root mean square error (RMSE) 
score. The results of the IDW power 5 interpolation method are shown in Figure 2. Black indicates that the lowest 
amount of solar energy that can be produced is between 1000 and 1050 kilowatt-hours. The color yellow indicates the 
maximum energy units for renewable energy, which are 1400–1450 kilowatt-hours (KWh). The distribution map 
produced by applying the IDW spatial interpolation approach is shown in Figure 2, demonstrating the non-uniform 
distribution of solar energy availability across the provinces of Sumatra Island. 

The provinces of Lampung and Bengkulu have the most significant potential for renewable energy, whereas the 
province of North Sumatra displays the least potential for renewable energy. The combined energy output from these 
provinces exceeds 1350-1400 kWh (specifically 1416.676 kWh), with North Sumatra having the lowest average power 
output of 1210.029 kWh. The renewable energy production in Sumatra peaked at around 1.250 kWh in the early 1980s, 
but then experienced a significant decrease until it reached a level just above 1000 kWh between 1995 and 2003. 
However, only the provinces of Lampung and Bengkulu were able to achieve a recovery to the level of 1400 kWh in 
2019. 
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Figure 2. Total Energy (KWh) for 1980-2020 for 1 KW Power Plants 

 
3.2 Forecasting 

 Renewable energy potential data is a collection of time series data that relies on both present and future 
observations. The renewable energy potential data in Sumatra is characterized by a consistent time interval of 1 hour 
between each data point. Time series models can be used to represent data that exhibit correlation and share the same 
time interval. The selected modeling approach for this analysis is a stationary time series model. Therefore, it is 
imperative to assess the stationarity of the renewable energy potential data. 

 The selection of forecasting techniques for annual solar energy power output data using ARIMA relies on the 
examination of ACF (Autocorrelation Function) and PACF (Partial Autocorrelation Function) plots. The modeling of the 
annual data from 1980 to 2019 was performed after verifying that the data displayed stationary behavior and negligible 
volatility, obtained from the estimated value (λ) and the value of one on the Box-Cox curve. Furthermore, the data was 
subjected to alignment testing utilizing the mean to examine the ACF and PACF plots, along with the Dickey Fuller 
Augmented test (ADF). If the p-value obtained from doing the Augmented Dickey-Fuller (ADF) test in each province of 
Sumatra exceeds the threshold of 0.05, it signifies that, on average, the data is non-stationary. To evaluate the efficacy 
of differencing and testing, one can analyze the autocorrelation function (ACF) and partial autocorrelation function 
(PACF) plots, together with the outcomes of the augmented Dickey-Fuller (ADF) test. The data, which exhibited an 
initially consistent range and subsequently attained greater stability, was subjected to analysis utilizing the 
Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) to detect patterns need differencing.  The 
study employed an assumption on the parameters of the model obtained from the automobile. The Arima approach, as 
described by [24], [36]. The model was subjected to model diagnostics using the Ljung-Box test. The results imply that 
the residual model of the solar energy power distribution data follows a random distribution, indicating its excellent 
effectiveness for forecasting purposes.  

The ten-year forecasting procedure includes 2020–2029 in its scope. The projected outcomes for the island of 
Sumatra during the next ten years are shown in Figure 3. It is possible to conduct ARIMA analysis in each province to 
evaluate whether the ARIMA approach is suitable for building solar energy output forecasting models in Sumatra. Ten 
Sumatra provinces provided the solar energy data, which was collected using the most accurate ARIMA model. The 
greatest predicted values differ significantly amongst the provinces. In 2020, the provinces of South Sumatra and the 
Riau Islands are expected to have the highest values, 1283.762 and 1175.751, respectively. The Bangka Belitung 
archipelago is predicted to have the highest value in 2021 (1239.979), followed by Jambi (12202.019) and West Sumatra 
Province (1223.051). At 1333.924, the projection for Bengkulu Province in 2022 is the highest of all the provinces. The 
province of Lampung is predicted to have the highest predicted value in 2025, with 1336.556. With a predicted value of 
1297.580 in 2026, the province of Riau is expected to have the highest predicted value. North Sumatra Province is 
expected to have the highest projection in 2029, with a value of 1165.816; Province Aceh is forecasted to achieve the 
highest predicted value by 2028, at 1261.562. The uniformity of solar energy capacity in Bengkulu and Lampung 
Provinces is evidenced by the spatial distribution of solar energy capacity in Sumatra. The majority of solar energy 
observational activities are focused on areas with significant solar energy potential. This location can be utilized for the 
construction of solar-powered plants in order to provide future energy needs. The ten provinces—Aceh, North Sumatra, 
Riau, Bengkulu, and Lampung—saw a generally positive trend, with annual projected results steadily rising. For the 
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provinces of Aceh and North Sumatra, the rise is noteworthy. In the meantime, South Sumatra, Bangka Belitung Islands, 
and Riau Archipelago appear to be declining steadily annually, according to the forecast statistics.   

 

 
Figure 3. Forecasting for potential Energy over Sumatera Island 2020-2029 

 
3.3 GAM Model 

Generalized Additive Modeling (GAM) is utilized to analyze temporal data and investigate patterns within the 
data. GAM provides a versatile method for determining patterns. The R library MGCV offers a plethora of valuable 
functions for modeling. Generalized Additive Models (GAM) are a nonparametric regression method that is employed 
to incorporate nonlinear effects. Nonparametric regression modeling offers considerable flexibility in choosing the shape 
of the curve, as it does not require a priori determination. Instead, the curve is constructed based on the available data. 
The analysis of GAM is conducted by calculating the potential of renewable energy based on the annual functional 
connection. Figure 4 illustrates the spatial allocation of potential energy across Sumatera Island during a span of 40 
years. It is evident that the trend is resuming an upward trajectory after 2005. 
 

 
Figure 4. Overall Energy Model for Sumatera Island 1980-2020 

 
3.4 Validation 

Figure 5 presents a comparison between the ARIMA forecasted data and the MERRA-2 data for the provinces 
of South Sumatra and the Bangka Belitung Islands in 2020. The MERRA-2 data exhibits a larger disparity compared to 
the projected data, with an average difference value of 133.533. In the provinces of Lampung, Jambi, and Riau Islands, 
the comparison of ARIMA and MERRA-2 forecasting data shows a relatively low correlation. The average discrepancy 
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between the two datasets is 31.640. Moreover, in the provinces of Aceh, Bengkulu, West Sumatra, and Riau, the ARIMA 
forecasting data exhibits a reduced magnitude compared to the data from MERRA-2, with an average discrepancy of 
34.971. Only the data for North Sumatra Province in 2020 shows agreement between the ARIMA predicting results and 
MERRA-2 data, according to the comparison graphic. Based on Figure 5, the data obtained from ARIMA modeling 
exhibits a distribution that is nearly identical to the MERRA-2 data.  The graph illustrates that the ARIMA model's solar 
energy capacity projections generally increase and eventually intersect with the actual data.  The ARIMA method's 
modeling has a Mean Absolute Percentage Error (MAPE) of 0.05103. 
 

 
Figure 5. Validation and Comparison 

 
4. Conclusion 

In an effort to encourage the use of renewable energy sources, this study presented a methodical technique for 
locating areas with a sizable potential for producing renewable energy. With a score of 996.85, the study indicated that 
the Province of the Riau Islands had the least potential for renewable energy in Sumatera Island. On the other hand, 
Lampung Province, with a rating of 1468, had the highest potential. Over 39 years, Sumatra's capacity for renewable 
energy has increased by 2.46%. With an average of 1416.676 kWh, Lampung Province has the highest solar energy 
capacity, according to research using the Inverse Distance Weighting (IDW) Interpolation technique, while North 
Sumatra Province has the lowest, with an average of 1210.029 kWh, for a power plant with a 1 kW capacity. The IDW 
interpolation method, with a power value of 5, yields the lowest RMSE value or the maximum level of accuracy, which 
is evaluated at 28.33, according to the results of this experiment. The analysis conducted with the ARIMA technique 
indicates that there is non-stationarity in the variance of the collected time series data. Considering that it has the lowest 
Mean Absolute Percentage Error (MAPE) value when compared to other arima models in other provinces, the 
ARIMA(1,0,0) model in Aceh Province is the most suitable for prediction. The Mean Absolute Percentage Error (MAPE) 
for the Aceh Province ARIMA (1,0,0) model is 0.0219. 
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