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Bearing failures in rotating machines can lead to significant 
operational challenges, causing up to 45-55% of engine failures and 
severely impacting performance and productivity. Timely detection 
of bearing anomalies is crucial to prevent machine failures and 
associated downtime. Therefore, an approach for early bearing 
failure detection using entropy-based machine learning is proposed 
and evaluated while combined with a classifier based on K-Nearest 
Neighbors (KNN) and Support Vector Machine (SVM). Entropy-
based feature extraction should be able to effectively capture the 
intricate patterns and variations present in the vibration signals, 
providing a comprehensive representation of the underlying 
dynamics. The results of the classification carried out by KNN-
Entropy have an accuracy value of 98%, while the SVM-Entropy 
model has an accuracy of 96%. Hence, the Entropy-based feature 
extraction giving the best accuracy when it is coupled with KNN. 

1. Introduction 
Bearing is an important and vulnerable component in a rotating machine [1], [2]. Based on a reliability survey on 

rotating machines, 45~55% of engine failures are caused by bearing failure [3], [4]. The statistic is in line with a research 
conducted by the Electric Power Research Institute EPRI, which states that 41~42% of induction motor failures are 
caused by damage to the bearings, and the other 36% are caused by defects in the stator [5], [6], [7]. Damage or defects 
in bearings, such as wear, cracks, scratches, and deformation, can cause vibration and noise in the engine, which 
results in engine failure when operating [8]. To avoid failure of the machine, it is necessary to carry out preventive 
maintenance.  

Bearings consist of several parts, including inner rings, outer rings, rollers, and several other small parts. One of 
the bearing applications is the utilization of train propulsion. Hence, it is important to have well-planned bearing design 
and maintenance [5].  Performing preventive maintenance on rotating machines can help prevent severe damage to 
the bearings [9]. Several researchers have developed vibration analysis based on Machine Learning (ML) and Deep 
Learning (DL). Vibration, in general, can also be used as an early warning system on rotating machines or other 
machines with the potential for vibration. 

In 2019, Pandarakone classified bearing damage using the SVM method with an accuracy rate of 95% [10]. 
Pandarakone uses RBF-type kernels with cost parameter and gamma parameter values of 1 and 0.33, respectively. 
Using vibration data, Liu et al. [11] 2021 conducted a study to detect early bearing damages. Liu compared the SVM 
and KNN classifiers with the MSAF-20-MAX feature extraction. This study shows that the classification results using 
KNN-MSAF-20-MAX can produce higher accuracy than SVM. Chérrez et al. [7] researched bearing fault detection using 
the combination of vibration and acoustic data based on supervised ML. Chérrez compared three different ML methods 
to detect bearing damage: MFE-SVM, RWE, and TSFDR-LDA. In this study, the TSFDR-LDA showed the best result, 
with an accuracy of 98,28%. In 2023, Song et al. [12] studied bearing surface damage using the YOLOv4 object 
detection algorithm. Song used the bounding box method to determine the defects on a photo of the bearing surface. 
The accuracy value of this study reached a value of 97.96%.  

Lee et al. [13] conducted a study by dividing the method into three outlines. First, Lee converts the vibration data 
into two-dimensional data (image) using the Short-Time Fourier Transform (SFTF). Second, the data is preprocessed 
using Mel Frequency Cepstral Coefficients (MFCCs). Third, the data is divided into certain classes using Class 
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Activation Map (CAM). Lu et al. [8] carried out machine vision-based defect classification using Lc-MNN to perform 
image segmentation. This study resulted in an accuracy of up to 99.5%, but the drawbacks of this method are that it 
requires much computation and takes a long time. Tastimur et al. [14] studied bearing damage detection by applying 
CNN as an image classification. Tastimur acquires vibration data which is then converted into an image vibration signal. 
The processed 2D signal image is then segmented and trained using CNN. 

In the previous studies, various techniques and methods have been carried out to develop bearing fault. They 
have explored various techniques and methods for developing bearing fault detection, emphasizing the need for quick 
and lightweight algorithms for real-time applications. Such algorithms should be suitable for implementation in 
microcontrollers. This research, however, primarily concentrates on the classification of damage in bearing components. 
To this end, it introduces a feature extraction approach based on Entropy. Entropy is chosen for its ability to enhance 
data differentiation, as it is particularly effective at pinpointing and highlighting the most critical features in a dataset. It 
assesses the data's degree of disarray or unpredictability, thereby facilitating a clearer separation between different 
classes or categories. This feature extraction method combines widely used classifiers, specifically KNN and SVM. 

The paper is divided into several parts, namely sections 2, 3, and 4. In section 2, we will discuss the methods and 
data sets used. This section will also explain the data preprocessing, processing, and evaluation procedures. In section 3, 
we will discuss more about the results of training and testing the model using the classifier that has been selected. In 
section 4, we will explain the conclusions of the research. 

 
2. Research Method 

The general architecture of the proposed method is shown in Figure 1. Firstly, the data was obtained from the 
accelerometer sensor or other sources. After receiving the data, the next step was preprocessing the data by using the 
signal segmentation method. Afterwards, feature extraction was performed on the data using combination of four 
Entropy, namely: Approximate Entropy, Sample Entropy, Slope Entropy, and Dispersion Entropy. This data were split 
five times using Random Split Data, and each split data were trained by 30 iterations. The features were inputted to the 
training process for building a classified method. 

 

 
Figure 1. Flowchart of the Training and Testing Dataset 

 
2.1 The Data Set 

CRWU (Case Western Reserve University) provides easily accessible open-source data for research purposes. 
One of the data supplied by CRWU is the bearing dataset which conducted the experiments using a 2 HP electric motor. 
Data were taken using an accelerometer sensor which was placed in a 12 o’clock position at both the Drive-End and 
Fan-End motor housing [15] [16]. Digital data collected was taken at 12,000 samples per second and 48,000 samples 
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per second for each position. CRWU performs vibration measurements on bearings with three defect locations 
categories: Inner ring, Outer ring, and Ball. 2. 

Defects in bearings were prepared by using Electro-Discharge Machining (EDS) with different diameters, namely 
0.007, 0.014, 0.021, and 0.028 inches. This study used data on the Drive End (DE) and Fan End (FE) with detailed 
specifications, as shown in Table 1. This data were divided into eight bearing defect locations plus one normal bearing 
condition. Hence, the total number of classes used in the study was nine for all. 

 
Table 1. Fault Location and Bearing Label Class 

Class Fault Location Diamater Depth Data Sample 
Bearing 

Manufacture 

0 Ball defect 0.021 0.011 201 SKF 
1 Ball defect 0.007 0.011 201 SKF 
2 Ball defect 0.014 0.011 158 SKF 
3 Inner ring 0.007 0.011 202 SKF 
4 Outer ring 0.007 0.011 201 SKF 
5 Inner ring 0.021 0.011 201 SKF 
6 Outer ring 0.014 0.011 202 SKF 
7 Normal - - 200 SKF 
8 Outer ring 0.021 0.011 200 SKF 
9 Inner ring 0.014 0.011 201 SKF 

 
The dataset that has been obtained were preprocessed by performing signal segmentation from 48,000 signals 

per second to 2,400 signals per segment. Hence, the total segmented signals were 1966 DE signals and 1966 FE 
signals. DE and FE, data segmentation results were then grouped into classes by dividing the number of each class, 
as shown in Table 2. After that, this signal was extracted using Feature Extraction. The signal extraction results were 
divided into two parts: Data Training and Data Testing, with a ratio of 75% and 25%, respectively. In this study, the split 
data was carried out five times, and each data split was trained in 30 training iterations. It was done to see whether the 
model has a good level of accuracy despite the changes to the arrangement of the training data and testing data. 
 
2.2 Simulation Set-Up 

The study utilized Google Colab, which offers a setup-free platform with complimentary access to computational 
resources. Google Colab facilitates a virtual environment, effectively executing all processes in the cloud. Data must be 
uploaded to Google Drive for accessibility in Google Colab. In this research, all training and testing data operations 
were conducted in the cloud environment. 

This investigation compared two classifier types, KNN and SVM, both employing the same feature extraction 
methods. For KNN in this research, hyperparameters were configured with a n_neighbors value of 5 and Euclidean 
distance as the metric. For SVM, the selected hyperparameter was C=1.0, using an RBF kernel, with gamma set to the 
scale (1 / (number of features * variance of all features)). 

This research aims to assess whether feature extraction through Entropy yields better results compared to 
Descriptive Statistics (DS). Consequently, this study performed training and testing using analogous hyperparameters 
for both KNN and SVM with DS feature extraction. The DS parameters included were mean, median, kurtosis, and 
skewness. 

 
2.3 Entropy for Feature Extraction 

Entropy is widely used in research to measure the disorder or uncertainty in a system [17]. If the uncertainty of 
the system tends to be small, then the system can move towards order. The outstanding value of a system is obtained 
when the entropy value is zero. Meanwhile, if the system uncertainty tends to be high, then the system is considered 
unstable. This study used Entropy to find and determine hidden features in each signal. Then, the feature were 
generated with a unique value according to the nature of the Entropy, which was random. Four types of Entropy were 
used, including Approximate Entropy, Sample Entropy, Slope Entropy, and Dispersion Entropy. 

Approximate Entropy (ApEn) [18] is an algorithm used to measure the regularity of a system without knowing 
information from the system. ApEn is used to help classify a reasonably complex system. The ApEn value is determined 
in the following stages: 

1) Let the data sequence consists of 𝑁 data, the value of 𝑋 = [𝑥(1), 𝑥(2), 𝑥(3), … , 𝑥(𝑁)] 
2) Let 𝑥(𝑖) is a sub-sequence value of 𝑋, it can be written as 𝑥(𝑖) = [𝑥(𝑖), 𝑥(𝑖 + 1), 𝑥(𝑖 + 2), … , 𝑥(𝑖 + 𝑚 − 1)] for 

1 ≤ 𝑖 ≤ 𝑁 − 𝑚, where 𝑚 represent the sample number. 

3) If 𝑟 is level filter noise, then it can be written using Equation 1: 
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𝑟 = 𝑘 × 𝑆𝐷 for 𝑘 = 0, 0.1, 0.2, 0.3, … , 0.9 (1) 
 
where 𝑆𝐷 is the standard deviation of 𝑋 sequence data. 

4) If {𝑥(𝑗)} is a sequence set obtained from 𝑥(𝑗) by varying the value of 𝑗 from 1 to N. Then each order of 𝑥(𝑗) in 

the set {𝑥(𝑗)} compared to 𝑥(𝑖). In this process, there are two parameters represented as 𝐶𝑖
𝑚(𝑟) and 𝐶𝑖

𝑚+1(𝑟). 

Hence, the Equation 2 and Equation 3 can be defined as follow: 
 

𝐶𝑖
𝑚(𝑟) =

∑ 𝑘𝑗
𝑁−𝑚
𝑗=1

𝑁 − 𝑚
 (2) 

 
where, 
 

𝑘 = {
1,    𝑖𝑓|𝑥(𝑖) − 𝑥(𝑗)| 𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑁 − 𝑚

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(3) 

and 

𝐶𝑖
𝑚+1(𝑟) =

∑ 𝑘𝑗
𝑁−𝑚
𝑗=1

𝑁 − 𝑚
 

where 𝑘 value is determined by: 

𝑘 = {
1,    𝑖𝑓 |𝑥(𝑖) − 𝑥(𝑗)| ≤ 𝑟 𝑎𝑛𝑑 |𝑥(𝑖 + 1) − 𝑥(𝑗 + 1)| ≤ 𝑟 𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑁 − 𝑚

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
5) Hence, the equation Φ𝑚(𝑟) dan Φ𝑚+1(𝑟) are obtained using Equation 4 and Equation 5: 

 

Φ𝑚(𝑟) =
∑ ln(𝐶𝑖

𝑚(𝑟))𝑁−𝑚
𝑖=1

𝑁 − 𝑚
 (4) 

  

Φ𝑚+1(𝑟) =
∑ ln(𝐶𝑖

𝑚+1(𝑟))𝑁−𝑚
𝑖=1

𝑁 − 𝑚
 (5) 

 
6) ApEn (m, r, N) Equation formulated using Φ𝑚(𝑟) dan Φ𝑚+1(𝑟), then the formula can be obtained using Equation 

6: 
 

𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = Φ𝑚(𝑟) -Φ𝑚+1(𝑟) =
1

𝑁−𝑚
[∑ ln (

𝐶𝑖
𝑚(𝑟)

𝐶𝑖
𝑚+1(𝑟)

)𝑁−𝑚
𝑖=1 ] (6) 

 
Richman [19] introduced a new calculation algorithm called Sample Entropy (SampEn). It tends to be lighter in 

computing and can reduce half of the computations performed by ApEn. The differences between SampEn and ApEn 
can be seen in the following stages: 

1) The denominator in SampEn only consists of 𝑆𝑎𝑚𝑝𝐸𝑛 (𝑁, 𝑚), which does not involve itself in the calculations. 
2) ApEn calculates the logarithm first and then multiplies it up. SampEn does the opposite. 
3) The comparison value of 𝑑[𝑥(𝑖), 𝑥(𝑗)] less than 𝑟 compared to the total value of the distance N − m which is 

represented as 𝐵𝑖
𝑚(𝑟) and it can be formulated as shown in Equation 7: 

 

𝐵𝑚(𝑟) =
1

𝑁 − 𝑚 + 1
∑ 𝐵𝑖

𝑚(𝑟)

𝑁−𝑚+1

𝑖=1

 (7) 

 

4) Repeat the steps above to get the value of 𝐵𝑖
𝑚+1(𝑟) 

5) Hence SampEn can be formulated as shown in Equation 8: 
 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟) = lim
𝑁→∞

[− ln
𝐵𝑖

𝑚+1(𝑟)

𝐵𝑚(𝑟)
 (8) 

 
6) Where 𝑁 is a finite number, then SampEn Equation 9 became: 

 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = ln (
𝐵𝑖

𝑚+1(𝑟)

𝐵𝑚(𝑟)
) (9) 
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Rostaghi and Azami [20] introduced Dispersion Entropy (DispEn) in 2016. It was developed to overcome the 
shortcomings of the previous Entropy method, which still needed to be faster to compute data. In addition, DispEn is 
also used to multiply the amplitude of various time series signals. Like other Entropy properties, DispEn is also very 
sensitive to signal amplitude and frequency changes. For univariate signal data 𝑁: 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑁, DispEn has 4 
stages: 

1) Mapped the value of 𝑥𝑗(= 1,2, … , 𝑁) into c class by the range 1 to c. The normal cumulative distribution function 

(NCDF) is used to map the  𝑥 value to 𝑦 = 𝑦1, 𝑦2, … , 𝑦𝑁. Then 𝑦𝑗 was assigned to integers 1 to c using linear 

algorithm. For each data, it was represented by  𝑧𝑗
𝑐 = 𝑟𝑜𝑢𝑛𝑑(𝑐𝑦𝑗 + 0.5), where 𝑧𝑗

𝑐 denotes the 𝑗-th number. 

2) Each 𝑧𝑖
𝑚,𝑐  vector with embedding dimension 𝑚 and time delay 𝑑 was formulated based on 𝑧𝑖

𝑚,𝑐 =

{𝑧𝑖
𝑐 , 𝑧𝑖+𝑑

𝑐 , 𝑧𝑖+(𝑚−1)+𝑑
𝑐 }, where 𝑖 = 1,2, … , 𝑁 − (𝑚 − 1)𝑑. Each  𝑧𝑖

𝑚,𝑐
 time series was mapped into dispersion pattern 

𝜋𝑣0𝑣1,…,𝑣𝑚−1
 where 𝑧𝑖

𝑐 = 𝑣0, 𝑧𝑖+𝑑
𝑐 = 𝑣1, … , 𝑧𝑖+(𝑚−1)𝑑

𝑐 = 𝑣𝑚−1. The number of possible dispersion pattern to be 

assigned to the time series 𝑧𝑖
𝑚,𝑐

 equal with 𝑐𝑚. 

3) For every dispersion pattern 𝑐𝑚, the relative frequency can be obtained as shown in Equation 10: 
 

𝑝(𝜋𝑣0𝑣1…𝑣𝑚−1
) =

𝑁𝑢𝑚𝑏𝑒𝑟 {𝑖|𝑖 ≤ 𝑁 − (𝑚 − 1) 𝑑, 𝑧𝑖
𝑚,𝑐  ℎ𝑎𝑠 𝑡𝑦𝑝𝑒 𝜋𝑣0𝑣1…𝑣𝑚−1

 }

𝑁 − (𝑚 − 1)𝑑
 (10) 

 

where 𝑝(𝜋𝑣0𝑣1…𝑣𝑚−1
) is the number of dispersion pattern 𝜋𝑣0𝑣1…𝑣𝑚−1

  which can be assigned to 𝑧𝑖
𝑚,𝑐

. 

4) Then DispEn with embedding dimension 𝑚, time delay 𝑑, and number of classes 𝑐 can be shown as written in 
Equation 11: 
 

𝐷𝑖𝑠𝑝𝐸𝑛(𝑥, 𝑚, 𝑐, 𝑑) = ∑ 𝑝(𝜋𝑣0𝑣1…𝑣𝑚−1
) ∙ ln(𝑝(𝜋𝑣0𝑣1…𝑣𝑚−1

))

𝐶𝑚

𝜋=1

 (11) 

 
Slope Entropy (SlopEn) was introduced in 2019 by Cuesta-Frau [21]. Slope Entropy is a development of the 

previous type of Entropy. The 2 new parameters were added in SlopEn, they were 𝛾  and 𝛿, where each parameter 
represent increment horizontal dan increment vertical respectively. Hence, the stages of SlopEn can be described as 
follows: 

1) Given the time series data of 𝑍 = {𝑧𝑖 , 𝑖 = 1,2, … , 𝑛, hence the value of 𝑍1 = {𝑧1, 𝑧2, … , 𝑧𝑚}, 𝑍2 = {𝑧2, 𝑧3, … , 𝑧𝑚+1}, 
𝑍𝑘 = {𝑧𝑘 , 𝑧𝑘+1, … , 𝑧𝑛}, where 𝑚 is embedding dimension and 𝑘 = 𝑛 − 𝑚 + 1. 

2) Decided threshold symbol parameter 𝛾  and 𝛿. If 𝑧𝑖 − 𝑧𝑖 > 𝛿 then the symbol describe as +2, If 𝛾 < 𝑧𝑖+1 − 𝑧𝑖 < 𝛿 

the symbol describe as +1, If |𝑧𝑖 − 𝑧𝑖| ≤ 𝛾 the symbol describe as 0, Jika −𝛿 < 𝑧𝑖+1 − 𝑧𝑖 < −𝛾 the symbol 
describe as -1, and if 𝑧𝑖+1 − 𝑧𝑖 < −𝛿  the symbol describe as -2, where 𝛿 > 𝛾 > 1. 

3) The sequence of symbol patterns obtained from the previous stage is 𝑌1 =  {𝑦1, 𝑦2, … , 𝑦𝑚−1}, 𝑌2 =  {𝑦2, 𝑦3, … , 𝑦𝑚}, 
and 𝑌𝑘 =  {𝑦𝑘 , 𝑦𝑘+1, … , 𝑦𝑛−1}, where 𝑦𝑗 is the symbol associated with 𝑧𝑗+1 − 𝑧𝑗 and 𝑘 = 𝑛 − 𝑚 + 1. 

4) Given the total recorded number of symbols is 𝑡𝑖, 𝑖 = 1, 2, … , 𝑆, and the recorded relative frequencies is 𝑝𝑖, 

hence it can be formulated as shown in Equation 12: 
 

𝑝𝑖 =
𝑡𝑖

𝐽
, 𝑖 = 1,2, … . , 𝑆 (12) 

 
5) Hence, the SlopEn Equation can be written using Equation 13 as follows: 

 

𝑆𝑙𝑜𝑝𝐸𝑛(𝑥, 𝑚, 𝑁, 𝛾, 𝛿) = − ∑ 𝑝𝑖 ln 𝑝𝑖

𝑆

𝑖=1

 (13) 

 
2.4 K-Nearest Neighbors (KNN) for Classifier 

K-nearest neighbors (KNN) is a classifier widely used in several implementations because of its ease of use. 
KNN uses a non-parametric classifier to classify new, unknown features, where the computation is done online [22]. 
For its use, KNN utilizes several techniques, including Euclidean distance, City Block, and the Cosine formula. However, 
KNN makes more use of the Euclidean distance to identify the nearest neighbor and calculate the class output value 
[23]. You can use the following Euclidean Equation, presented in Equation 14, to calculate the distance between two 
points between A and B in feature space: 
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𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝐴, 𝐵) = √
∑ (𝑥𝑖 − 𝑦𝑖)

2𝑚
𝑖=1

𝑚
 (14) 

 
For data points that do not have a uniform standard, it is necessary to normalize the data with the equation as 

shown in Equation 15: 
 

𝑑𝑖 = √(𝑎𝑥 − 𝑎𝑟)2 + (𝑏𝑥 − 𝑏𝑟)2 + (𝑐𝑥 − 𝑐𝑦)
2

+ ⋯ (15) 

 
Where 𝑎, 𝑏,  and 𝑐 are testing data, 𝑥 is the data training point and 𝑟 is the data testing point.  
 
2.5 Support Vector Machine (SVM) for Classifier 

Vapnik first introduced the Support Vector Machine (SVM) in the 1960s. SVM has been widely used in pattern 
recognition for decades and performs excellently [24]. SVM works to find the value of margin optimization between two 
classes. However, for its development, SVM is widely used in multi-class [25]. 

In a data set with training samples, a number 𝑁 is represented by {(𝑥𝑖 , 𝑦𝑖), 𝑖 = 1, 2, … , 𝑁} where 𝑥𝑖 ∈ 𝑅𝑛 is feature 

vector and 𝑦𝑖 ∈ {−1, 1} is the label. Then, the linear classifier equation is shown in Equation 16. 
 

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏 (16) 
 
where 𝑤 and  𝑏 classified as unknown parameters, it is necessary to determine the decision function, which is formulated 
by using Equation 17: 
 

𝑦𝑖𝑓(𝑥) ≥ 1, 𝑖 = {1,2, … , 𝑁} (17) 
 

In some cases, SVM does not include a separating hyper lane, so it is necessary to add a slack variable, as 
shown by the Equation 18. 
 

𝑦𝑖𝑓(𝑥) ≥ 1 − 𝜉𝑖 (18) 
 
where 𝜉𝑖 ≥ 0 and 𝑖 = {1,2, … , 𝑁}. Hence the SVM Equation can be shown using Equation 19 as follows: 
 

min(𝑤, 𝑏, 𝜉) =
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑁

𝑖=1

 
(19) 

s.t.          𝑦𝑖𝑓(𝑥) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑁 
 

where 𝐶 is a constant corresponding to the value of ‖𝑤‖2. To perform linear separability, the original feature is placed 
in a higher dimensional space with a function Φ(𝑥) called the kernel trick. Hence, the corresponding kernel can be 
shown in Equation 20. 
 

𝐾(𝑥𝑖 , 𝑥𝑗) = Φ𝑇(𝑥𝑖)Φ(𝑥𝑗) (20) 

 
Based on the corresponding kernel equation, the decision function can be formulated using Equation 21: 
 

𝑓(𝑥𝑖) = ∑ 𝑦𝑘𝛼𝑘𝐾(𝑥𝑖 , 𝑠𝑘) + 𝑏

𝑁𝑠

𝑘=1

 (21) 

 
where 𝛼𝑘 Lagrange multiplication and 𝑆𝑘 is called a support vector where the Lagrange product is nonzero. Using the 
kernel method, SVM can overcome problems with linear separable hyperplanes. SVM can use several kernels, including 
linear, polynomial, sigmoid, and RBF. 
 
3. Results and Discussion 

After adding feature extraction training using KNN and SVM as the classifier, a comparison of Accuracy, 
Precision, Recall, and F-1 were achieved. Based on the data in Table 3, KNN-Entropy and SVM-Entropy have an 

https://creativecommons.org/licenses/by-nc-sa/4.0/


Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control 
 
 

Cite: S. U. E. Hakim, I. Bahiuddin, R. Arifianto, and S. A. Ritonga, “Entropy and K-Nearest Neighbors-Based Feature Extraction for Bearing Fault 

Detection”, KINETIK, vol. 9, no. 1, Feb. 2024. Retrieved from https://kinetik.umm.ac.id/index.php/kinetik/article/view/1814 

 
 

 

  

  
 

27 

average Accuracy, Precision, Recall, and F-1 of 98% and 96%, respectively. The accuracy figure was juxtaposed with 
that derived from integrating KNN-DS (K-Nearest Neighbors Descriptive Statistics) and SVM-DS (Support Vector 
Machine-Descriptive Statistics), in order to ascertain if the feature extraction performed by Entropy yielded the highest 
accuracy.  

The result from KNN-DS and SVM-DS have lower accuracy: 79% and 71%, respectively. It is shown that the 
Entropy model is better for classifying data than the DS model. Entropy can generate features uniquely based on its 
algorithm steps. The Entropy algorithm allows feature extraction to be carried out based on the time domain and 
frequency domain. In DS, it can only be done based on time series calculations (mean, median, kurtosis, and skewness). 

When choosing the classifiers, KNN outperformed SVM. This superiority of KNN arises from its methodology of 
classifying by measuring the query's distance to all data points, sorting them from nearest to farthest. The classification 
of a query depends on the distance to its nearest neighbors. This study obtained the best K value when K = 5. On the 
other hand, SVM primarily focuses on separating categories using linear boundaries, which has limitations. This 
approach increases the likelihood of misclassifying data that does not conform to specific classes, leading to a higher 
potential for classification errors. Figure 3 illustrates the comparative results of the KNN-Entropy and SVM-Entropy 
model classifications. 

 
Table 2. The average result of the evaluation metric for each method 

Model Accuracy Precision Recall F1 Score 

KNN-DS 0,7919 ± 0,0034 0,7904 ± 0,0037 0,7927 ± 0,0036 0,79 ± 0,0032 

KNN-Entropy 0,9828 ± 0,0031 0.9833 ± 0.0032 0,9833 ± 0,003 0,9827 ± 0,0031 

SVM-DS 0,7194 ± 0,0725 0,7039 ± 0,093 0,719 ± 0,0723 0,6922 ± 0,0913 

SVM-Entropy 0,964 ± 0,0373 0,9632 ± 0,0477 0,9642 ± 0,0402 0,9622 ± 0,0461 

 
However, in order to be able to perform calculations using a microcontroller, a light and fast computation is 

required. This study did not only compared the value of the evaluation metric, but also the computation time performed. 
The KNN-Entropy combination model has a classification computing time of 0.0304 ± 0.0055 s. Meanwhile, SVM-
Entropy has a computing time of 0.0075 ± 0.0012 s. The computation time required by KNN-Entropy is five times longer 
than SVM-Entropy. However, a more in-depth usability justification must be applied for further application to bearing 
fault detection. This justification is used to determine the use of the model on the microcontroller. To apply the KNN-
Entropy model, we need to ensure that the microcontroller has a specification suitable for longer and heavier 
computation. Meanwhile, for low-level microcontrollers, SVM-Entropy can be applied for classification. 

 

 
(a) 

 
(b) 

Figure 2. (a) KNN-Entropy Classification Model, (b) SVM-Entropy Classification Model 
 
4. Conclusion 

This study aims to develop a bearing fault detection by comparing the feature extractions. Entropy-based feature 
extraction can provide a higher accuracy value than descriptive statistics. Hence, Entropy-based feature extraction is 
very good for increasing bearing fault detection classification accuracy. While the best classifier is obtained when using 
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KNN, the KNN-Entropy combination has higher accuracy than the SVM-Entropy combination. Thus, in this study, the 
combination of methods capable of producing the best accuracy is the KNN classifier with Entropy-based feature 
extraction. Future studies should endeavor to create models that not only maintain the high levels of accuracy, but also 
optimize the computational efficiency. 
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