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Chronic kidney disease is one of the deadliest diseases in the world. It is 
important to identify chronic kidney disease at an early stage, so that treatment 
and prevention can be carried out early. This study used linear interpolation 
method to treat the missing values, resampling using SMOTE method, and 
several feature selection methods, such as Pearson’s correlation coefficient 
and Principal component analysis. For the classification methods, Support 
Vector Machine and Logistic Regression were used to build prediction models 
for chronic kidney disease based on dataset on UCI Machine Learning. To 
measure the performance of the model, several test scenarios were tested out 
so it can be compared to the previous research on the detection of chronic 
kidney disease, which is used as a benchmark for this study. The best result 
from the experiment is obtained from the scenario of resampling using SMOTE 
and feature selection using Principal Component Analysis with averaged 
accuracy, precision, and f1-score respectively are 98,8%, 100%, dan 98,77%. 

 
1. Introduction 

Chronic Kidney Disease (CKD) is a type of kidney disease that causes gradual decline in kidney function. This 
phenomenon can be observed over months or even years due to varying patient lifestyles. CKD is also known as renal 
failure, and according to current medical statistics, 10% of the world’s population suffers from chronic kidney disease. 
In 2005, approximately 58 million people died, and according to the World Health Organization (WHO), 35 million of 
those deaths were related to chronic disease [1]. The diagnosis of CKD typically begins with clinical data, laboratory 
tests, imaging studies, and ultimately, biopsy. Although biopsy is a standard diagnostic test, it has several drawbacks, 
such as being invasive, expensive, time-consuming, and occasionally risky. For instance, if a biopsy is performed, 
patients may experience facial swelling, fear of surgery, and potential misdiagnosis. Imaging techniques (such as 
mammography, sonography, and renal MRI) have been used to detect this disease for many years. However, there are 
limitations to their use, including concerns about radiation exposure. Despite these risks, the information obtained from 
imaging is not sufficient for diagnosing CKD [1]. 

A data science solution for the analysis of healthcare data is prospective to help saving lives and improve the 
quality of life. Data is one of the most crucial resources for researchers in the fields of health sciences and medicine. 
Through those sample data, analysts search for trends, patterns, and similarities to invent new treatments or strengthen 
existing ones. Providing sample data may be expensive, and rare strains (or fewer samples) may not appear to have 
enough information to make the prediction statistically significant. Thus making the learning process from the dataset 
more challenging to use appropriately [2]. Predictive analysis is a method that utilizes various techniques, such as 
machine learning, data mining, and statistics to forecast future events. In the fields of health care and medicine, this 
technique has benefits for data analysis in order to evaluate, make decisions, and make predictions [3]. The goal of 
predictive analysis is to transform data into valuable insights that can enhance businesses [4]. In the context of 
classifying kidney failure, one can create a classifier using predictive and classification methods such as support vector 
machines (SVM) and logistic regression (LR). 

Research [5] discusses how kidney disease has been a major concern in the healthcare industry. The healthcare 
industry generates a large amount of data that needs to be examined to uncover hidden information for diagnosis, 
prognosis, and decision-making. Kidney failure is currently one of the leading causes of death in India. Kidney failure is 
the gradual loss of kidney function. As the disease worsens, it leads to problems such as high blood pressure, anemia, 
weak bones, malnutrition, and nerve damage. The Global Burden of Disease (GBD) 2015 ranked kidney failure as the 
eighth leading cause of death in India. 
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Predictive analysis predicts future events that have not yet occurred or predicts conditions that have not been 
observed from the historical data. By examining historical data, patterns can be identified, which can then be used to 
establish relationships or map these patterns to future events. Predictive analysis involves the use of statistical analysis 
and machine learning techniques to determine the likelihood of future events or conditions not present in previous data. 
The models used generate probability predictions for different or new data [6]. 

This research used references from previous studies on methods and models for analyzing and predicting kidney 
disease events based on the medical histories of patients. The inquiry utilizes several sources. The first study, 
conducted in 2018 by Amirgaliyev et al.[1], utilized machine learning and support vector machines (SVM) to analyze 
chronic renal disease with an accuracy of 82%. The author intended to improve accuracy by employing SVM with feature 
selection. The research has concluded that the method Support Vector Machine (SVM) has an accuracy of 82%. In this 
study, the writer hopes that SVM with feature selection can have better accuracy. In 2020, I. U. Ekanayake [7] conducted 
research on chronic kidney disease, Little's MCAR (Missing Completely at Random) mechanism was employed, a 
statistical technique designed to manage the complexities introduced by these absent values in a systematic manner, 
and the prediction method used was support vector machine, which achieved an accuracy of 96%. The writer wants to 
explore whether using linear interpolation for handling missing values will yield better accuracy. In 2023, S. Pal [8] 
conducted a research on a chronic renal disease dataset using SVM, examining three variations: categorical features, 
non-categorical features, and a combination of both. The respective attained accuracies were 91%, 91%, and 88%. The 
purpose of the present study is to examine SVM with two feature selection methods—correlation matrix and principal 
component analysis (PCA) in order to evaluate their effect on accuracy. D.A. Debal [9] utilized SVM with recursive 
feature elimination and unsupervised feature selection in 2022, attaining 95.5% and 96.6% accuracy, respectively. The 
purpose of the present investigation is to examine whether PCA is more accurate than previous research. In 2021, G.M. 
Ifraz [10] focused on chronic kidney disease and removed outliers using correlation-based feature selection. The 
accuracy of the logistic regression algorithm was 97%. Ongoing research investigates linear interpolation and 
resampling synthetic minority oversampling technique (SMOTE) as methods for managing missing data in the dataset 
on chronic kidney disease. In the second study conducted in 2021, Emon et al. [11] used principal component analysis 
and logistic regression to predict chronic kidney disease with an accuracy of 96%. With or without resampling, the author 
anticipates that PCA could conceivably improve accuracy. 

On the chronic kidney disease dataset, this study aims to attain optimal performance using classification methods, 
namely Support Vector Machine (SVM) and Logistic Regression (LR). The newness comes from the use of a few 
techniques: linear interpolation is used to fill in missing values, correlated features and principal component analysis 
(PCA) are used to choose features, and the Synthetic Minority Oversampling Technique (SMOTE) is used to fix 
imbalanced data. Not only do these techniques function as classifiers, but they also model class probabilities, resulting 
in remarkable accuracies of 98.8% and 98.6% respectively and the runtime model. The unique contribution of this study 
is its exhaustive examination of the combined effect of improved missing value treatment, resampling techniques for 
unbalanced datasets, and advanced feature selection methods on the accuracy of prediction systems for machine 
learning models.  

 
2. Research Method 
2.1 System Design 
 

 

Figure 1. System Design 
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Figure 1 shows the comprehensive system design of this research. This design encapsulates a multi-faceted 
approach, incorporating various elements that synergistically contribute to the program's functionality and objectives. 
This study refers to several previous research references regarding methods and models for the analysis and 
prediction/detection of kidney disease events in patients based on their medical history. 

 
2.2 Data Collection 

The kidney disease dataset is obtained from the UCI Machine Learning website. The dataset chosen is the kidney 
disease dataset in India for the year 2015. It contains 24 features for 400 individuals [12], including 14 numerical features 
and 10 categorical features. Several numerical features exhibit extreme outliers, while others have discrete values. The 
data becomes discrete due to the measurement methods. Some features have a high proportion of certain values, 
making them not easily associated with measures of central tendency. Some features are highly skewed, while others 
are normally distributed. While certain categorical characteristics have nearly no missing values, others have a very 
high fraction of them. However, in this research the models are built from non-categorical data only.  

 
2.3 Preprocessing 
2.3.1 Interpolating Missing Value 

Missing values in the dataset are smartly filled using a localized approach called linear interpolation. It involves 
estimating missing values using nearby data points. The algorithm looks at the data points just before and after the 
missing one to establish a straight-line connection between them. This relationship is then used to predict the missing 
value, replacing it with a value that fits the existing pattern. The advantage of using local linear interpolation is that it 
generates estimations that suit the dataset's specific characteristics. It focuses on the immediate data surroundings and 
captures likely trends and patterns nearby [13]. This leads to more accurate estimations of missing values compared to 
methods that consider the entire dataset and might miss small local differences. By using linear interpolation to handle 
missing values, the dataset's accuracy is maintained, benefiting any future analysis or modeling with a completer and 
more consistent dataset. This approach is especially valuable when missing values sporadically arise due to the 
influence of neighboring data points. It enables accurate guesswork based on data while keeping the dataset's natural 
structure intact. 

The implementation is just as usual linear interpolation. Suppose that (𝑥1, 𝑦1) and (𝑥2, 𝑦2) be the adjacent data 
points near point (𝑥, 𝑦), where 𝑦 is the missing value [14]. Then the guess value for 𝑦 can be calculated using Equation 
1. 

 

�̂� = 𝑦1 +
𝑦2 − 𝑦1
𝑥2 − 𝑥1

(𝑥 − 𝑥1) (1) 

 
2.3.2 Resampling using SMOTE 

The SMOTE technique is employed as a strategic approach in analyzing an imbalanced dataset related to kidney 
disease from the UCI repositor. The dataset's inherent imbalance, where one class significantly outnumbers the other, 
can lead to skewed model performance. By applying SMOTE, synthetic instances are generated for the minority class 
through interpolation of existing data points. A sample of the minority class is chosen, and fresh synthetic samples are 
added along the line segments connecting some or all of the minority class's k-nearest neighbors [15]. It effectively 
balances the class distribution, ensuring that the model is exposed to a more representative set of data. So, the machine 
learning model can learn from a more complete and fairer dataset [16]. This improves its ability to correctly classify 
examples of both classes and gives a more accurate picture of how well it works in the underrepresented class, which 
in this case is kidney disease. Table 1 shows the before and after of the SMOTE implementation of class frequency in 
the dataset. 

 
Table 1. Class Frequency Comparison before and after Resampling SMOTE. 

Resampling using SMOTE Positive class Negative class 

Before 250 150 

After 250 250 

  
2.4 Feature Selection 
2.4.1 Correlation Matrix 

Before employing the data for training and constructing a predictive model, it is imperative to determine the key 
factors that exert a substantial influence on the identification of kidney disease events. This crucial process, known as 
feature selection, is essential for enhancing model accuracy. Among the straightforward techniques for pinpointing 
influential attributes, correlation analysis takes precedence. This statistical approach quantifies the extent to which two 
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variables exhibit a linear relationship [17]. For calculating the correlation, Pearson's correlation coefficient stands as the 
most employed method. The calculation of the Pearson correlation coefficient can be achieved using Equation 2. 

 

𝜌𝑋,𝑌 =
𝐶𝑜𝑣(𝑋, 𝑌)

𝜎𝑥𝜎𝑦
 (2) 

  
Where, cov(X,Y), 𝜎𝑋and 𝜎𝑌 represent the covariance of X and Y, and the standard deviation for each data 𝑋 and 

𝑌, respectively, as the formulas are shown in Equation 3 and Equation 4 with �̅� and �̅� are the average values.  
 

𝜎𝑋 = √
∑ (𝑥𝑖−�̅�)

2𝑁
𝑖=1

𝑁−1
, 𝜎𝑌 = √

∑ (𝑦𝑖−�̅�)
2𝑁

𝑖=1

𝑁−1
 (3) 

  

𝐶𝑜𝑣(𝑋, 𝑌) =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑁
𝑖=1

𝑁 − 1
 (4) 

 
The Pearson’s correlation coefficient is used to measure the relationship between variables with continuous 

values. However, for categorical data, some measures of association that can be used to assess the relationship 
between variables include Tetrachoric, Polychoric, and Cramer's V. In this research, the correlation matrix for 
categorical variables utilizes Cramer's V as in Equation 5. 
 

𝑉 = √
𝜒2/𝑁

min⁡(𝑘 − 1, 𝑟 − 1)
 (5) 

 
2.4.2 Principal Component Analysis 

A powerful method for reducing dimensionality, principal component analysis (PCA) has several uses in fields 
including biology, facial recognition, and classification. The principal component analysis (PCA) method looks for the 
principal components (PCs) to identify the data's underlying, inherently low-dimensional structure. Due to the fact that 
the data's dimensionality has been significantly decreased while maintaining its latent structure [18]. 

The fundamental step of PCA is to transform the correlated mixed signals into a collection of values for the so-
called principle components, which are linearly uncorrelated variables. Maximizing the variances of the combined signal 
is therefore the PCA criteria to estimate the n-th unmixing row vector, producing the n-th main component [19]. 
 

𝑤𝑛 = argmax
||𝑤||

2
=1

𝐽(𝑤𝑇 𝑥𝑛) (6) 

  

𝐽(𝑦) = ||𝑦||
2
, 𝑥𝑛 = (𝐼 − ∑𝑤𝑗𝑤𝑗

𝑇

𝑁−1

𝑗=1

) (7) 

 

x is a created signal from the combined signal x and the unmixing row vector {𝑤𝑗}𝑗=1
𝑛−1, I is the identity matrix, 

which has the dimensions 𝑁 × 𝑁, with n = 1, 2,..., N. The first main component has the greatest achievable variance 
when n = 1. The sequential principal components for n = 2, 3,..., N have the most variance they may with the restriction 

that they are orthogonal to the preceding principal components, as presented in Equation 6 and Equation 7 [19]. 

 
2.5 Prediction Modeling 
2.5.1 Logistic Regression 

In the healthcare industry, logistic regression is a very well-liked and effective classification technique. The logistic 
regression model has been used in several published healthcare research on a range of disorders. In the classification 
of datasets pertaining to kidney disease, logistic linear regression arises as a useful technique. Logistic regression is 
ideally adapted for binary classification tasks in which the objective is to predict which of two classes an instance belongs 
to [20]. Using logistic linear regression, the model estimates the probability of an instance belonging to a specific class 
by combining input features and corresponding weights in a linear fashion. Using a predetermined threshold, this 
calculated probability is then transformed into a binary outcome [21]. By dividing into two classes, LR of order-n is 
represented as LR of order-n [22]. 

https://creativecommons.org/licenses/by-nc-sa/4.0/
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𝑃(𝑥1, 𝑥2, ⋯ , 𝑥𝑁) =
1

1 + 𝑒−(𝑏0+𝑏1𝑥1+𝑏2𝑥2+⋯+𝑏𝑁𝑥𝑁)
 (8) 

 
In order to estimate the probability values Equation 8, the target characteristic is split into two classes: 

"successful" and "unsuccessful." It yields a value of 1 for the "successful" class and a value of 0 for the "unsuccessful" 
class [22]. In the context of classifying kidney diseases, logistic linear regression can learn the relationships between 
different medical characteristics and whether or not the disease is present. This makes it easier to make accurate 
predictions based on the characteristics of the dataset. It provides interpretable insights into the impact of individual 
characteristics on the likelihood of developing kidney disease, making it a valuable diagnostic and risk assessment tool. 
 
2.5.2 Support Vector Machine 

In the realm of kidney disease identification, support vector machines (SVM) offer a robust approach to 
classification. SVM is particularly well-suited for scenarios where data points can be separated by a clear boundary, 
maximizing the margin between different classes [23]. When applied to kidney disease classification, SVM aims to find 
a hyperplane that best segregates instances representing the presence or absence of the disease while maximizing the 
distance between the two classes [24]. The decision boundary is defined by a linear combination of input features, and 
the model identifies support vectors data points closest to the decision boundary which play a pivotal role in determining 
the optimal separation with the formula is expressed by Equation 9. The formula used to solve the SVM optimization 
problem involves minimizing the norm of the weight vector while satisfying certain constraints. Mathematically, this 
optimization problem can be expressed as in Equation 10 and Equation 11. 
 

𝑦(𝑥) = 𝑤𝑡 ∙ 𝑥 + 𝑤0 (9) 

  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒:min
𝑤,𝑏

1

2
⁡||𝑤||

2
 (10) 

  
𝑠𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜:⁡𝑦𝑖(𝑤 ⋅ ⁡𝑥𝑖 ⁡− ⁡𝑏) ≥ ⁡⁡1⁡𝑓𝑜𝑟⁡𝑎𝑙𝑙⁡𝑑𝑎𝑡𝑎⁡𝑝𝑜𝑖𝑛𝑡𝑠⁡(𝑥𝑖 , 𝑦𝑖)⁡ (11) 

 
Here, 𝑤 represents the weight vector, 𝑥𝑖 denotes the input features of the ith instance, 𝑏 is the bias term, and 𝑦𝑖 

is the corresponding class label (+1 or -1). This formula captures the essence of SVM's goal to find the optimal 
hyperplane that separates the classes while maintaining the maximum possible margin. In the context of kidney disease 
identification, SVM's ability to handle complex feature relationships and define clear decision boundaries makes it a 
valuable asset in accurately classifying instances based on their medical attributes. 

 
2.6 Performance Evaluation 

The confusion matrix is used to determine factual information and the classification prediction results of a 
classification system. The performance of the classification system is generally evaluated using a data matrix. Here is 
the display of a confusion matrix in Table 2.  

 
Table 2. Confusion Matrix 

 
 

Prediction 

 Actual 

 Positive Negative 

Positive TP FP 
Negative FN TN 

 
The performance evaluation of a model is conducted to assess how well the model performs by using test data 

for prediction. The evaluation involves calculating accuracy, precision, and sensitivity/recall. The formulas for these 
performance evaluations [5] are given in Equation 12, Equation 13, and Equation 14. 
 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙⁡𝐷𝑎𝑡𝑎
 (12) 

  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (13) 

  

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (14) 
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2.7 Cross-Validation 
A technique for assessing machine learning algorithms is called K-fold cross-validation. The data is divided into 

a number of K parts using this manner, one of which will be used for testing prior to training. Cross-validation is a method 
that involves resampling the dataset to evaluate machine learning algorithms with smaller data samples. K-fold cross-
validation checks the procedure for each sample after dividing the dataset into K-number of samples, resulting in an 
average accuracy for the dataset [25]. 
 
3. Results and Discussion 

The dataset of kidney failure in India from UCI Machine Learning consisting of 400 instances with 25 features 
were used. The 25 features underwent preprocessing, including transforming categorical features from "yes" and "no" 
values to 1 and 0, followed by linear interpolation to fill in missing values. Unresolved missing values can lead to changes 
in the analysis results. Ultimately, data that contains missing values can yield different conclusions compared to cleaned 
or repaired data.  

In the preliminary experiment, SVM and Logistic regression are found to return the highest evaluation scores 
(accuracy, precision, and F1-score) among other machine learning models for the dataset used in this research. 
Furthermore, to enhance the recent performance, this study provides three testing scenarios involving hyperparameter 
model tunning, resampling technique, and feature selection model. Table 3 explains the details of the scenarios 
provided in this research. 

 
Table 3. Testing Scenarios Description 

 

The goal 
Machine 

learning model 

Applying 
resampling 
technique of 

SMOTE 

Missing 
values 

treatment 
Feature selection 

Scenario-1: 

to test 
hyperparameter 
tuning in improving 
model performance 

SVM and 
Logistic linear 

regression. 
No applied 

Pearson correlation 
with threshold.  

Scenario-2 

to test resampling 
technique in 
improving model 
performance 

SVM and 
Logistic linear 

regression. 
Yes applied 

Pearson correlation 
with threshold. 

Scenario-3 

to test PCA feature 
selection in 
improving model 
performance 

SVM and 
Logistic linear 

regression. 
Yes and no applied 

Principal Component 
Analysis (PCA) 

 
3.1 Testing Scenario 
3.1.1 Scenario-1 

In Scenario 1, the study attempts to use the SVM and LR methods to test whether hyperparameter tuning 
improves each model’s performance. The feature selection used is performed using Pearson’s correlation coefficient, 
which identifies four significant correlated features. For hyperparameter tuning, GridSearchCV was utilized to obtain the 
best parameter of each model, SVM and LR. 

 
Table 4. Tuned Parameters 

 
Parameter 

Value 

Support Vector Machine Logistic Regression 

kernel / solver linear, rbf liblinear, saga 

C 100, 10, 1.0, 0.1, 0.01 100, 10, 1.0, 0.1, 0.01 

gamma scale none 

penalty none l1, l2 
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Table 4 shows the range values of the parameters used for hyperparameter tuning. By using the GridSearchCV 
method, it obtains the best scores and best parameters. The best score for SVM is 98% from the best parameters of 
'C': 10, 'gamma':'scale', and 'kernel': 'linear'. Meanwhile, the LR method resulted in the best score of 98%, with the best 
parameters being 'C': 10, 'penalty': 'l2', and 'solver': 'liblinear'. 

 
Table 5. The Average and the Deviation of Evaluation Score from K-Fold Validation 

 
Testing 

 Accuracy Precision F1-Score 

Mean Deviation Mean Deviation Mean Deviation 

Support Vector 
Machine 

94.25% 2.97% 98.01% 2.63% 95.22% 2.56% 

Logistic 
Regression 

94% 2.78% 98.01% 2.63% 95.01% 2.4% 

Support Vector 
Machine Tuning 

98% 1.5% 98.49% 2.48% 98.41% 1.17% 

Logistic 
Regression 

Tuning 

 
98% 

 
2.07% 

 
99.52% 

 
1.43% 

 
98.93% 

 
1.81% 

 
From Table 5, the K-fold cross-validation outcomes for scenario 1 was found, where K equals 10. After applying 

feature selection using Pearson’s correlation coefficient for SVM, the average accuracy, precision, and F1-score are 
94.25%, 98.01%, and 95.22% respectively. The corresponding standard deviations are 2.97%, 2.63%, and 2.56%. The 
execution time for this model is 0.07 seconds as in Table 8. For Logistic Regression, the average accuracy, precision, 
and F1-score are 94%, 98.01%, and 95.01% respectively, with standard deviations of 2.78%, 2.63%, and 2.4%. The 
runtime for this model is also 0.07 seconds as in Table 8. Comparing to the results using optimized hyperparameters, 
which utilize GridSearchCV, the SVM obtains average accuracy, precision, and F1-score are 98%, 98.49%, and 
98.41%, respectively. The smallest standard deviation, 1.5%, is observed for accuracy, while precision and F1-score 
have standard deviations of 2.48% and 1.17% respectively. The runtime for this model is 295 seconds as in Table 8. 
As for logistic regression, the average accuracy, precision, and F1-score are 98%, 99.52%, and 98.93%, respectively, 
with standard deviations of 2.07%, 1.43%, and 1.81%. The runtime for this model is 67 seconds as in Table 8. Therefore, 
hyperparameter tuning significantly increases accuracy, precision, and F1-score on average for both models with a 
lower deviation of the cross-validation test.  

 
3.1.2 Scenario 2 

In Scenario 2, the data were resampled using the SMOTE method to account for imbalances. This was 
accomplished by oversampling the dataset, which was then used for prediction with SVM and LR. In accordance with 
Scenario 1, feature selection using the correlation matrix resulted in the identification of four correlated features. 

 
Table 6. The Average and the Deviation of Evaluation Score from K-Fold Validation 

 
Testing 

 Accuracy Precision F1-Score 

Mean Deviation Mean Deviation Mean Deviation 

Support Vector 
Machine 

95.2% 2.71% 98.78% 1.87% 94.93% 2.99% 

Logistic 
Regression 

94.2% 4.04% 100% 0% 93.64% 4.65% 

 
Table 6 displays the results of k-fold cross-validation for the second scenario, with k maintained at 10. When 

SMOTE resampling and correlated features were selected, the average accuracy was marginally higher than in 
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Scenario 1. The average accuracy, precision, and F1-score for the support vector machine are 95.2%, 98.78%, and 
94.93%, with standard deviations of 2.71, 1.81, and 2.99%, respectively. This model's execution time remains at 0.04 
seconds, reflecting the information presented in Table 8. The average accuracy, precision, and F1-score in the context 
of logistic regression are 94.2%, 100%, and 93.64%, respectively. The standard deviations are 4.04%, 0%, and 4.56%, 
respectively. Table 8 depicts that the runtime for this logistic regression model remains slightly quicker at 0.02 seconds. 

 
3.1.3 Scenario 3 

In Scenario 3, the study attempts to use the SMOTE method for oversampling the data. Subsequently, feature 
selection is performed using Principal Component Analysis (PCA) with (n_component = 7) to identify the best features 
to be predicted by the Support Vector Machine and Logistic Regression methods. 

 
Table 7. The Average and the Deviation of Evaluation Score from K-Fold Validation 

 
Testing 

 Accuracy Precision F1-Score 

Mean Deviation Mean Deviation Mean Deviation 

Support Vector 
Machine 

97.5% 2.24% 99.22% 1.57% 97.95% 1.85% 

Logistic 
Regression 

98.75% 1.53% 99.52% 1.43% 98.96% 1.28% 

Support Vector 
Machine SMOTE 

 
98.6% 

 
1.28% 

 
99.62% 

 
1.15% 

 
98.57% 

 
1.32% 

Logistic 
Regression 

SMOTE 

 
98.8% 

 
1.33% 

 
100% 

 
0% 

 
98.77% 

 
1.37% 

 
In Table 7, the results of k-fold cross-validation (k=10) for the third scenario are presented. The first set of results 

shows the performance without using SMOTE for resampling, but with feature selection using principal component 
analysis (PCA). It can be observed that there is a considerable improvement in the average and standard deviation for 
both methods after applying SMOTE with feature selection using PCA. Without SMOTE, the support vector machine 
achieved an average accuracy, precision, and F1-score of 97.5%, 99.22%, and 97.95% respectively, with standard 
deviations of 2.24%, 1.57%, and 1.85%. The runtime for this model is 31 seconds as in Table 8. For logistic regression, 
the average accuracy, precision, and F1-score were 98.75%, 99.52%, and 98.96% respectively, with standard 
deviations of 1.53%, 1.43%, and 1.28%. The runtime for this model is 0.05 seconds as presented in Table 8. 

After applying SMOTE, there was a significant increase in the average accuracy, precision, and F1-score. The 
support vector machine achieved an average accuracy, precision, and F1-score of 98.6%, 99.62%, and 98.57% 
respectively, with standard deviations of 1.28%, 1.15%, and 1.32%, which were smaller than the previous results. The 
runtime for this model is 29 seconds as in Table 8. Similarly, for logistic regression, the average accuracy, precision, 
and F1-score were 98.8%, 100%, and 98.77% respectively, with standard deviations of 1.33%, 0%, and 1.37%, which 
were also smaller than the previous results. The runtime for this model is 0.01 seconds as in Table 8.  SMOTE led to 
an increase in the average accuracy, precision, and F1-score, while reducing the standard deviation for both methods. 

 
3.2 Discussion 

Three distinct scenarios were conducted, each aimed at evaluating different preprocessing techniques involving 
the use of linear interpolation for handling missing values. The results exhibited distinct performances for each scenario. 
Scenario 1 involved hyperparameter tuning, resulting in improved accuracy for both the support vector machine (SVM) 
and logistic regression methods. Scenario 2 incorporated SMOTE resampling, yielding a minor accuracy boost for both 
methods. Scenario 3, on the other hand, which combined SMOTE resampling with feature selection using principal 
component analysis, showed a big improvement in accuracy for both methods, making it the best scenario in this study. 

Prior studies in kidney disease prediction through machine learning are noteworthy. For instance, Amirgaliyev et 
al. utilized support vector machines to forecast chronic kidney disease, achieving 82% accuracy [1]. In this study, the 
SVM was employed across all three scenarios, and it has outperformed the previous model in terms of average 
accuracy. Similarly, Ekanayake's study leveraged Little's MCAR method and SVM, attaining 96% accuracy [7]. 
However, the interpolation-based Scenario 1 produced an average accuracy of 98% for SVM, albeit with a longer 
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runtime. In Debal's work [9], support vector machines were used alongside feature selection methods, with the 
unsupervised approach yielding 96.7% accuracy. This study employed principal component analysis for feature 
selection, achieving an average accuracy of 97.5%, surpassing Debal's model. Likewise, Emon et al. garnered 96% 
accuracy with principal component analysis and logistic regression [11]. In the Scenario 3, leveraging logistic regression 
and principal component analysis for feature selection, this study achieved an impressive average accuracy of 98.75%, 
which further improved to 98.8% with SMOTE resampling. This scenario demonstrated superior accuracy and runtime 
efficiency. 

K-fold cross-validation (K = 10) facilitated various insightful findings across all scenarios. Notably, Scenario 1, 
featuring SVM with hyperparameter tuning, yielded strong outcomes. Average accuracy, precision, and F1-score were 
98%, 98.49%, and 98.41%, with low standard deviations. Although the runtime was relatively lengthy, this contributed 
to Scenario 3's performance. Table 6 shows that when linear interpolation and principal component analysis were used 
together in Scenario 3, the results were very accurate and ran quickly. Consequently, Scenario 3 emerges as the most 
promising among the three. 

In Scenario 3, leveraging both SMOTE resampling and principal component analysis for feature selection led to 
significant enhancements. For SVM, the average accuracy, precision, and F1-score reached 98.6%, 99.62%, and 
98.57%, with narrow standard deviations. Logistic regression demonstrated an average accuracy, precision, and F1-
score of 98.8%, 100%, and 98.77%, respectively, with equally small standard deviations. This scenario showcased 
substantial accuracy improvements and reduced standard deviations. Notably, both methods displayed consistent, 
reliable measurements while maintaining a relatively swift runtime. 

Despite its applicability to small datasets, SMOTE's ability to fill data gaps with synthetic samples did not yield 
optimal results in Scenario 2, where feature selection used the correlation matrix. However, it excelled in Scenario 3 
when coupled with principal component analysis, achieving the best outcome. Table 8 explains the details of each 
runtime model, and scenario 3 is the best model. 

 
Table 8. Model Runtime for Each Scenario 

Scenario Method Time Consume 

 
 
 

Scenario 1 

Support Vector Machine  0.07 seconds 

Logistic Regression  0.07 seconds. 

Support Vector Machine Tuning 295 seconds 

Logistic Regression Tuning 67 seconds 

 
Scenario 2 

Support Vector Machine  0.04 second 

Logistic Regression  0.02 second. 

 
 
 

Scenario 3 

Support Vector Machine  31 seconds 

Logistic Regression  0.05 seconds. 

Support Vector Machine SMOTE 29 seconds 

Logistic Regression SMOTE 0.01 seconds 

 
4. Conclusion 

This study introduced an automated classification algorithm designed for chronic kidney disease diagnosis based 
on a comprehensive dataset that encompasses clinical history, physical examination, and laboratory tests. The dataset 
utilized were sourced from the UCI Machine Learning repository. This study employed SVM and LR prediction models 
to identify instances of chronic kidney disease. The objective was to assess these models in comparison to the previous 
related studies. Before entering the prediction models, the dataset underwent missing value treatment using linear 
interpolation. 

Subsequently, a series of test scenarios were conducted, yielding diverse performances. Notably, the third 
scenario emerged as the most promising. For the SVM, the average accuracy, precision, and F1-score are 98.6%, 
99.62%, and 98.57%, respectively, with standard deviations of 1.28%, 1.15%, and 1.32%. Parallelly, logistic regression 
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produces average accuracy, precision, and F1-score figures of 98.8%, 100%, and 98.77%, with standard deviations of 
1.33%, 0%, and 1.37%, respectively. The reliability and consistency of accuracy measurements are shown by the very 
small standard deviation values for SMOTE resampling and principal component analysis (PCA)-based feature 
selection. Additionally, when applying principal component analysis after SMOTE resampling, the support vector 
machine exhibits a runtime of 29 seconds, while logistic regression showcases significantly faster processing at 0.01 
seconds. 

This study gives a way to improve the speed and accuracy of diagnosing kidney disorders by combining linear 
interpolation, SMOTE resampling, feature selection, PCA, and prediction models like logistic regression and SVM. This 
streamlined approach accelerates patient care and diagnostic precision. To further enhance model effectiveness, the 
expansion of the dataset is recommended. Collecting kidney disease-related data from medical facilities worldwide 
would bolster the available samples and introduce additional indicators, ultimately enhancing the quality of the kidney 
disease models generated. 
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