
Cite: A. B. Harisa, S. . Nugroho, L. . Umaroh, and Y. P. . Astuti, “Threat Construction for Dynamic Enemy Status in a Platformer Game using
Classical Genetic Algorithm”, KINETIK, vol. 8, no. 3, Aug 2023. https://doi.org/10.22219/kinetik.v8i3.1724

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
Journal homepage: http://kinetik.umm.ac.id
ISSN: 2503-2267
Vol. 4, No. 3, August 2019, Pp. 277-288

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
Journal homepage: http://kinetik.umm.ac.id
ISSN: 2503-2267
Vol. 8, No. 3, August, Pp. 633-640

633

 Threat construction for dynamic enemy status in a platformer game
using classical genetic algorithm

Ardiawan Bagus Harisa*1, Setiawan Nugroho1, Liya Umaroh1, Yani Parti Astuti1

Department of Computer Science, Universitas Dian Nuswantoro, Indonesia1

Article Info Abstract
Keywords:
Adaptive Enemy, Platformer, Procedural
Content Generation, Genetic Algorithm, Game
Pacing

Article history:
Received: May 02, 2023
Accepted: June 12, 2023
Published: August 31, 2023

Cite:
A. B. Harisa, S. Nugroho, L. Umaroh, and Y.
P. Astuti, “Threat Construction for Dynamic
Enemy Status in a Platformer Game using
Classical Genetic Algorithm”, KINETIK, vol.
8, no. 3, Aug. 2023.
https://doi.org/10.22219/kinetik.v8i3.1724

*Corresponding author.
Ardiawan Bagus Harisa
E-mail address:
ardiawanbagus@dsn.dinus.ac.id

Digital game genre such as Action-Platformer is widely popular among buyers
on a platform like Steam. The non-playable character enemies in the game are
important in action games. Unfortunately, they usually have static attributes like
health points, damage, and enemy movement. Using the combination of
procedural content generation and dynamic difficulty adjustment with a
classical genetic algorithm, we drive the threat value of a platform to construct
the enemy status, resulting in more dynamic enemies. We use the threat value
as an input parameter calculated from the enemies’ stats in every platform,
such as total damage that the enemy might produce, the player’s health point,
and the enemy’s movement speed. We conclude that using a classical genetic
algorithm may produce dynamic enemy status through the desired threat or
danger set by the game designer as an input parameter. Moreover, the game
designer may limit the generation with constraints.

1. Introduction

A digital game is a game that is played on a computer-based platform, the interaction between a human who
seeks pleasure and a machine that provides the interaction [1]. In today’s game industry, in the Action category, the
platformer is one among popular sub-genres [2]. According to data published by the Entertainment Software Association
(ESA), the Action-Adventure Platformer game genre from 2017 to 2022 was in America’s top 5 biggest sales [3], [4].
Platformer is separated into several subs, including, but not limited to, 2D Platformers, Precision Platformers, Puzzle
Platformers, and Runner. Some new categories are rising from the old game, say Metroidvania, now considered a
separate, independent sub-category [5]. Since 2020, more than 51 games have contained “Platformer” in their title on
Steam, and now 395 games are under the platformer genre.

One of the reasons why platformer games are popular is because the avatar on the game connects the player to
the virtual environment through a digital (imaginative) identity [6]. In platformer games, providing challenge and danger
to players is critical [7]. One of the popular approaches from the game designer is placing the Non-Playable Character
(NPC) like an enemy on the platform where the player moves as progresses in the game. Unfortunately, suppose the
player has played the game several times. In that case, they already build a rigid strategy since the enemy status is
always the same every time they play, which reduces the game dynamic. We can use a familiar method such as dynamic
difficulty adjustment (DDA) to simply change the NPC’s attributes without bothering about their different appearances
[8], or procedural content generation (PCG) to make the enemy more dynamic or even adaptive [9]–[11]. One way is to
generate the status of the enemies differently every time player plays the game, such as the enemy’s health point (HP),
speed, and damage produced.

Various DDA and PCG techniques can be used to generate dynamic danger in platformer games [12]-[17]. For
example, we can use advanced techniques like machine learning, an evolutionary algorithm like a genetic algorithm
(GA), or even as simple as a finite state machine (FSM). GA is one of the popular techniques in game research since
it is the heuristic algorithm to find the optimal solution to a problem [9], [11], [14].

This paper shows how to minimize the boring, predicted experience by generating enemy status dynamically in
a platformer game by constructing the danger perceived by players using classical GA. Our research is inspired by the
PCG implementation among the research to provide a dynamic experience through the contents, for instance, the
enemy. Although our research is strongly related to DDA, we are not only focused on the difficulty adjustment. Similar
to [18], we can also provide the generation of contents and the constraints. For instance, the types of enemies (and
their appearances), their positions, and more. Because the game’s difficulty is in the game mechanics, and the
mechanics itself is one of the game contents, then we may say that procedurally generating a dynamic difficulty on the

https://doi.org/10.22219/kinetik.v8i3.1724
http://kinetik.umm.ac.id/
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1457736067&1&&2016
http://kinetik.umm.ac.id/
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1457736067&1&&2016
http://kinetik.umm.ac.id
chttps://crossmark.crossref.org/dialog/?doi=10.22219/kinetik.v8i3.1724&domain=pdf

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

© 2023 The Authors. Published by Universitas Muhammadiyah Malang
This is an open access article under the CC BY NC SA license (https://creativecommons.org/licenses/by-nc-sa/4.0/)

634

NPC is also a topic in PCG. Section 1 explains the research motivation and relevant works. Section 2 provides the main
methodology. Section 3 contains the experimental results and discussions. Finally, section 4 presents the conclusions.

1.1 Dynamic Enemy

As we mentioned earlier, by using PCG, we can provide the player with experience to increase engagement.
Here we show the related work to our research, using PCG to generate the intended level by the game designer.
Dynamic enemy is a term in the video game used to describe that the enemy in it can change and adapt dynamically
towards the given configurations, resulting in the NPC enemies can adapt in different situations and increasing player’s
engagement. However, the goal is to ensure that the difficulty fits the player according to their performance and keeps
them motivated to play the game [16].

One example of dynamic enemy implementation is an adaptive enemy which will adapt to player performance
[16], [17]. For instance, if a player with a high-performance score, say, kills many enemies or completes the tasks in a
short period, the higher chance the game will evolve the provided enemy to increase the difficulty, enhancing the
damage, speed, base health points, and may result in more advance strategy needed to defeat. In contrast, when the
player is facing a defeat, the system reduces its difficulty by lowering the movement speed and damage of enemy. It
ensures the game is still challenging based on any player progressing in the game.

1.2 PCG in Platformer Games

A platformer game is a video game genre where the player can move on an environment (platform) to take the
player to reach the goal. The platform in the platformer game can be a flat, linear path to uneven, moving parts [8]. In
our study, the platforms used are shown in Figure 1 and Figure 7, where in on each platform, there are enemies and
other properties related to the game environment. The platforms used have a box shape since our game is a 3D
platformer with a little bridge between platforms.

Procedural Content Generation (PCG) is a content creation process in the game automatically using the
mathematic procedure or algorithm, such as game levels, items, character cosmetics, enemies, and more [19]. The
goal is to help the developer build a massive amount of various content alternatives, avoiding manual work. Studies on
implementing the PCGs techniques have been published.

Moghadam and Rafsanjani in [20] uses GA to generate and evaluate rhythms from creating 2D runner platformer
levels. First, they generate rhythms using GA, then use the resulting rhythm patterns to generate the level ’s geometry,
and finally decorate the level with props. Sarkar et al. developed a system to automatically place collectible coins in
platformer games based on the desired path [21]. They use the player’s trajectories to detect the desired path. Their
study focused on placing the coins on the path so the player can naturally move while collecting them in a platformer
game.

The use of LSTM (long-short term memory recurrent neural network) has been shown to generate Super Mario’s
level alternatives with the help of the snaking-depth-path approach [22]. Snaking is an alternative approach where
instead of handling the platformer data as a sequence of objects bottom-to-top individually, we consider it continuous
columns. Therefore, it can be bottom-to-up on the predecessor column and top-to-bottom on the next one. Similar to
the previous study, their study uses player path trajectory as path information for level generation. Finally, the depth of
the approach means they consider 12 past columns as information for LSTM to remember. To make it more interesting,
they increase the emergence of special objects after every four columns.

While the studies focus on rhythm patterns and player trajectory to generate a platformer level, [18] uses GA to
drive the level generation with pacing aspects as parameters. Pacing aspects such as threat, movement impetus, and
tempo are intuitively designed and calculated to predict the game flow. The authors provide a simple and intuitive curve-
based user interface to represent the pacing curves on a game level. Our research borrows the threat aspect to be a
driver to generate the enemies’ status. The original concept was applied to the dungeon, rogue-like game. However, as
stated in their paper, we may still implement the concept since the threat aspect is calculated differently according to
the game design, including the game’s genre.

Dynamic enemy is a term in the video game used to describe that the enemy in it can change and adapt
dynamically towards the given configurations, resulting in the NPC enemies can adapt in different situations and
increasing player’s engagement. However, the goal is to ensure that the difficulty fits the player according to their
performance and keeps them motivated to play the game [16].

2. Research Method

Our study focuses on providing a player with dynamic enemies on a platformer game using a classical genetic
algorithm, especially to evolve the enemies’ status as designed by the game designer using one of the pacing aspects,
threat. The threat aspect mostly discusses the danger on a platform chunk that emerge from the enemies. In summary,
the input of our system is the original status of enemies, then modified with GA by calculating the threat value on each
platform.

https://creativecommons.org/licenses/by-nc-sa/4.0/

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Cite: A. B. Harisa, S. . Nugroho, L. . Umaroh, and Y. P. . Astuti, “Threat Construction for Dynamic Enemy Status in a Platformer Game using
Classical Genetic Algorithm”, KINETIK, vol. 8, no. 3, Aug 2023. https://doi.org/10.22219/kinetik.v8i3.1724

635

In this study, we borrow the concept of pacing aspects [18] and focus only on the threat. Since the threat
implementation in every game genre varies, we modified the threat calculation as shown by Equation 1, Equation 2,
and Equation 3. We normalize the threat value so that the designer can easily configure it and the constraints. We
collect data through a literature study, questionnaire, and experiments. Through literature study, we search for what
minimum criteria for making a platformer level. The platformer contains player objects, chunks of the platform, collectible
items, obstacles and enemies, and finally, a finish point [8], [18], [22], [23].

In later section, we conducted user studies by asking seven students in Intelligent System Laboratory, Universitas
Dian Nuswantoro, to fill out the questionnaire after they played generated game level. Furthermore, we will compare
the questionnaire data and the recorded gameplay data to find a conclusion.

Figure 1. Our system’s overview to generate dynamic enemy status

2.1 Input Parameters

Procedural Content Generation (PCG) is a content creation process in the game automatically using the
mathematic procedure or algorithm. We create a dynamic enemy with a generator based on the threat value as a fitness
target for genetic algorithm. Since we are focusing only on the threat produced by the enemy in the platforms, the level
of space or geometry itself can be produced manually or automatically using our previous study [18]. For this study, we
will provide a player with five main platforms and one boss platform. Please note that the equations below are seen
from the enemy’s threat perspective. The output of our system is also a chunk of platform where the enemies’ status
and number might be modified by the system. We are highly focus on generating the enemy status based on the
designer’s target threat automatically. Therefore, the designer does not need to manually craft the enemies in every
platform. The designer just needs to set the target threat, and then the enemies’ status are changed accordingly.

2.1.1 Damage

First, we modified the metrics and used the minimum parameters possible to implement the concept for various
game genres easily. Total damage produced by the enemy is a significant parameter as input for our system, indicating

the threat for the player. According to Equation 1, the effectiveness of total damage 𝑓𝐷𝑚𝑔𝐸 is the result of damage of

every enemy in a platform 𝐷𝑚𝑔𝐸 multiplied by the attack frequencies 𝐴𝑓𝐸 then divided by player HP 𝐻𝑃𝑝.

𝑓𝐷𝑚𝑔𝐸 = ∑
𝐷𝑚𝑔𝐸𝑖 × 𝐴𝑓𝐸𝑖

𝐻𝑃𝑃

𝑛𝐸

𝑖=1

 (1)

https://doi.org/10.22219/kinetik.v8i3.1724

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

© 2023 The Authors. Published by Universitas Muhammadiyah Malang
This is an open access article under the CC BY NC SA license (https://creativecommons.org/licenses/by-nc-sa/4.0/)

636

2.1.2 Health Point
The base level of the player’s health point is also a crucial factor contributing to the threat perceived by the player.

Therefore, the player’s hp ratio to the enemy’s hp is also essential. The effectiveness of enemy’s HP is shown with 𝑓𝐻𝑝𝐸

which calculated from total enemies HPs 𝐻𝑝𝐸 divided by player’s HP 𝐻𝑃𝑃.

𝑓𝐻𝑝𝐸 = ∑
𝐻𝑝𝐸𝑖

𝐻𝑃𝑃

𝑛𝐸

𝑖=1

 (2)

2.1.3 Movement Speed

Finally, the effectiveness of the enemy’s movement speed compared to the player’s is also considered as it also

contributed to the threat for the player. 𝑓𝑀𝑜𝑣𝑒𝐸 is calculated from the ratio player’s speed 𝑆𝑝𝑃 compared to enemies’s

speed 𝑆𝐸𝑖.

𝑓𝑀𝑜𝑣𝑒𝐸 = ∑
𝑆𝐸𝑖

𝑆𝑝𝑃

𝑛𝐸

𝑖=1

 (3)

2.2 Genetic Algorithm

We run our GA for a single platform on the game scene. The number of the run is dependent on the number of
target solutions for each platform. The flow of our GA is shown in Algorithm 1. We use the classical genetic algorithm
to find the fittest solution represented as chromosomes. Here is how it works:
Input: The input to the algorithm is a sample platform samplePlatform where the enemies lie (it includes the enemies).

The sample platform is then converted as a chromosome c, a solution individual.
Step 1: Initialize the while loop. The algorithm continues to iterate until the maximum fitness from the best chromosome
in the population C (denoted as MaxFit(C)) reaches a specified fitness target fitTarget.
Step 2: For each iteration of the while loop, generate a new population C by cloning and mutating the existing individuals

in the population as many as determined by nc.

Step 3: Update the population C with the newly generated individuals (clones) by adding them to the existing population.
Step 4: Calculate the maximum fitness among the individuals in the population C and select it as the current fittest

individual sc.

Step 5: Perform crossover (denoted as Cross()) between the highest-fitness individual sc and each individual in the
population C with a probability of r (random number) < cRate, that is 0.05.

Step 6: Perform mutation (denoted as Mut()) on each individual in the population C with a probability of r < cRate, also

0.05, using the highest-fitness individual sc as a reference.

Step 7: Repeat steps 2-6 until the maximum fitness of the population MaxFit(C) reaches the fitness target.
Step 8: Once the fitness target is reached, return the maximum fitness of the final population C as the algorithm’s output.

In summary, this algorithm uses genetic operations like cloning, crossover, and mutation to evolve a population

of individuals towards a threat calculated using Equation 1, Equation 2, and Equation 3 as a fitness target. Then, the
algorithm iteratively generates new individuals, updates the population, performs genetic operations, and repeats the
process until the fitness target is achieved.

Algorithm 1. The Flow of GA in our system.

s ← samplePlatform
c ← s
while MaxFit(C) < fitTarget do:
 for i = 0 to nc do:
 c ← Mut(clone(c))
 C ∪ {c}
 sc ← MaxFit(C)
 ∀c ∈ C, c ← Cross(sc, c), r < cRate
 ∀c ∈ C, c ← Mut(sc, c), r < mRate
return MaxFit(C)

https://creativecommons.org/licenses/by-nc-sa/4.0/

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Cite: A. B. Harisa, S. . Nugroho, L. . Umaroh, and Y. P. . Astuti, “Threat Construction for Dynamic Enemy Status in a Platformer Game using
Classical Genetic Algorithm”, KINETIK, vol. 8, no. 3, Aug 2023. https://doi.org/10.22219/kinetik.v8i3.1724

637

3. Results and Discussion
3.1 Experiments

Our initial experiments use 30, 50, and 100 generations as genetic parameters with 25, 50, and 100
chromosomes in the populations. Figure 2 and Figure 3 shows the result averaged fitness of five runs. However,
according to the result of experiments, using 30 generations produces the worst fitness, and the best fitness showed
when using 100 generations and 100 chromosomes. Therefore, we use 100 generations and 100 chromosomes each
to ensure the fitness converges in the expected iteration numbers and to avoid low-quality solutions resulting from the
low number of generations or individuals.

Figure 2. The ftness of using 25, 50, and 100 population size with 50 generations each

Figure 3. The fitness of using 25, 50, and 100 population size with 100 generations each

In our further experiments, we construct a platformer level using eight big platform chunks in the level experiment.

Using the genetic parameter obtain from initial experiment, the GA will run on each platform individually. The designer
can set the target threat as a fitness target and constraints such as the max value of any status attribute from enemies.
Table 1 shows that the generated enemies’ errors are low. The highest error rate was observed at platform 8. It is
because we configure the constraints for all platforms uniformly, sometimes making the solution hard to converge.
However, as mentioned in [18], adjusting the constraints can easily address such cases. Moreover, the space layout
and properties, as mentioned before, will also have an impact on the error. Fortunately, we did not consider such
attributes to be calculated. From Table 1, we set the lowest target threat to 0.1 on platform 1 and 0.9 on the boss
platform. We intuitively categorize the threat as easy (0-0.3), medium (0.31-0.6), and hard (0.61-1) difficulty.

Table 1. Fitness differences from platforms

Platform Target Threat Avg. Fitness Avg. Error Rate

1 0.1 0.999 0.13%
2 0.2 0.998 0.24%
3 0.3 0.998 0.18%
4 0.4 0.997 0.28%
5 0.5 0.996 0.37%

0

0,5

1

1,5

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Fitness of 50 Generations

25 Pop 50 Pop 100 Pop

0

0,5

1

1,5

1 7 1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

Fitness of 100 Generations

25 Pop 50 Pop 100 Pop

https://doi.org/10.22219/kinetik.v8i3.1724

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

© 2023 The Authors. Published by Universitas Muhammadiyah Malang
This is an open access article under the CC BY NC SA license (https://creativecommons.org/licenses/by-nc-sa/4.0/)

638

6 0.6 0.989 1.12%
7 0.7 0.984 1.58%
8 0.8 0.960 3.98%

Boss 0.9 0.997 0.31%

 Avg. 0.991 0.91%

3.2 User Study

In this user study, we record the seven players’ gameplay data and ask them to complete the questionnaire.
Figure 4 shows the average duration (elapsed time) played by players. In Figure, 4, Figure 5, and Figure 6, the green
bar depicts the easy difficulty, the yellow means medium, and the red is the hard difficulty. According to the threat
configuration in Table 1, higher threats result in a longer time played by the players on a platform. In an easy setting,
the players spent 27 seconds on average. While on the medium platforms, they spent 72 seconds and 144 seconds on
hard platforms. So the ratio of elapsed time between easy:medium:hard is 1:3:6. The average elapsed time in the boss
platform is significantly higher because players tend to patiently attack with certain strategies to avoid critical damage.

Figure 4. The comparisons of elapsed time by player across platforms

Figure 5. The comparisons of player’s remaining HPs across platforms

Figure 6 shows the players’ responses to the difficulty of the platforms. All players agree that the early platform

1 and 2 is easy to play, platform 3 to 5 are medium, and 6 to 8 are hard to play. However, again, there is an anomaly
on the boss platform because some players have been defeated several times, and they need to replay the platform,
and some other players wait very patiently to attack the boss enemy. That is why in Figure 4, the players spent
significantly longer time, resulting in players sharing their difficulty perceptions differently to respond, as shown in Figure
6. The actual players’ perception of threat perfectly fits our expectations on platforms 1, 2, 7, and 8. Platforms 4 and 5,
respectively, show 71.4% and 57.1% towards our expectations. In contrast, platforms 3 and boss show low scores,
below 50%. Still, the average player experience of our designed threat is 71%. Figure 7 shows the capture of our
platformer game, which we have developed using Unity’s asset.

8
35 38

55 64
97 101 103

230

0

50

100

150

200

250

1 2 3 4 5 6 7 8 Boss

El
ap

se
d

 t
im

e
(s

ec
o

n
d

s)

Platforms

Elapsed time comparisons across platforms

91
78

54
63

83 83

59

39

71

0

20

40

60

80

100

1 2 3 4 5 6 7 8 Boss

R
em

ai
n

in
g

H
P

Platforms

Comparisons of players' remaining HP

https://creativecommons.org/licenses/by-nc-sa/4.0/

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Cite: A. B. Harisa, S. . Nugroho, L. . Umaroh, and Y. P. . Astuti, “Threat Construction for Dynamic Enemy Status in a Platformer Game using
Classical Genetic Algorithm”, KINETIK, vol. 8, no. 3, Aug 2023. https://doi.org/10.22219/kinetik.v8i3.1724

639

Figure 6. The questionnaire results from players across platforms

Figure 7. The screenshot of platform 4 in our platformer game. The figure shows the enemies’ attributes, such as
health point (HP), Damage (DMG), and speed (SPD). The free assets are downloaded from Unity Asset Store.

4. Conclusion

In this study, we construct the player experience in a platformer game, focusing on the concept of threat by
modifying the enemy status in each platform with a genetic algorithm. We use enemies’ damage, HP, and movement
speed as input parameters to drive our system. To calculate the threat value as one of the pacing aspects, we modify
the original one in [18] for a dungeon, rogue-like level, to a platformer level. The flow of our GA is straightforward. We
create a population from a sample platform, then select the best individual and perform crossover and mutation with a
certain probability rate within iterations. After the fitness threshold is reached, the GA produces the best solution.

We performed experiments to seek validation of our concept. First, we configured the threat between platforms
in a level to be 0-0.3 (easy), 0.31-0.6 (medium), and 0.61-1 (hard). The average fitness of using those settings is 0.99,
and the error rate is 0.91%. Next, we performed the user study by asking them to play a level containing nine platforms,
including the boss platform. The recorded gameplay data and responses from the players are then analyzed, which are:
1) higher threat results in longer elapsed time, 2) higher threat results in higher damage produced by enemies, and 3)
more than 71% of players’ responses agree with the designed threat provided in the testing session. To conclude, we
provide early work in a platformer game to provide the expected player experience using one of the pacing aspects, a
threat, as a basis.

There are some notable limitations of our work. First, we focus only on one aspect of pacing, threat, and
implement it on a platformer game which differs from the original concept (dungeon level). In the other more complex
genres, more parameters must be considered as input to drive the system. This research is part of our roadmap to build
a generative system for various game genres using pacing patterns aspects to drive the generation process. Our
suggestion for further research is: 1) more experiments to validate and measure the generated level needed to perform,
2) the threat patterns can be presented with various representations, such as graph grammar, 3) the platforms can be
built to be more dynamic and less linear (platform options in different vertical height).

Acknowledgement
We would like to express our gratitude to the Universitas Dian Nuswantoro to provide the funding for this research.

0

2

4

6

8

1 2 3 4 5 6 7 8 Boss

P
la

ye
rs

Platforms

Comparisons of difficulty perceptions

Easy Medium Hard

https://doi.org/10.22219/kinetik.v8i3.1724

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

© 2023 The Authors. Published by Universitas Muhammadiyah Malang
This is an open access article under the CC BY NC SA license (https://creativecommons.org/licenses/by-nc-sa/4.0/)

640

References
[1] K. Salen and E. Zimmerman, Rules of Play: Game Design Fundamentals. The MIT Press, 2003.
[2] N. Peever, D. Johnson, and J. Gardner, “Personality & Video Game Genre Preferences,” in Proceedings of The 8th Australasian Conference

on Interactive Entertainment: Playing the System, in IE ‘12. New York, NY, USA: Association for Computing Machinery, 2012.
https://doi.org/10.1145/2336727.2336747

[3] L. Husniah, F. Fannani, A. S. Kholimi, and A. E. Kristanto, “Game Development to Introduce Indonesian Traditional Weapons using MDA
Framework,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, pp. 27–36, Nov. 2018.
https://doi.org/10.22219/kinetik.v4i1.713

[4] Entertainment Software Association (ESA), “2022 essential facts About the video game industry,” Entertainment Software Association. 2022.
[5] Valve, “Steam Store,” Apr. 09, 2023.
[6] T. H. Apperley, “Genre and game studies: Toward a critical approach to video game genres,” Simul Gaming, vol. 37, no. 1, pp. 6–23, Mar.

2006. https://doi.org/10.1177/1046878105282278
[7] E. F. Melcer and M. A. M. Cuerdo, “Death and rebirth in platformer games,” Game User Experience And Player-Centered Design, pp. 265–

293, 2020. https://doi.org/10.1007/978-3-030-37643-7_12
[8] A. B. Harisa, H. Haryanto, and H. A. Santoso, “Model Tingkat Kesulitan Dinamis berbasis Logika Fuzzy pada Game Wayang Ramayana,” in

SEMNASTEKNOMEDIA ONLINE, 2016, pp. 2–6.
[9] A. Gellel and P. Sweetser, “A Hybrid Approach to Procedural Generation of Roguelike Video Game Levels,” in Proceedings of the 15th

International Conference on the Foundations of Digital Games, in FDG ‘20. New York, NY, USA: Association for Computing Machinery, 2020.
https://doi.org/10.1145/3402942.3402945

[10] G. N. Yannakakis and J. Togelius, “Experience-Driven Procedural Content Generation,” IEEE Trans Affect Comput, vol. 2, no. 3, pp. 147–161,
Jul. 2011. https://doi.org/10.1109/T-AFFC.2011.6

[11] M. Kaidan, C. Y. Chu, T. Harada, and R. Thawonmas, “Procedural generation of angry birds levels that adapt to the player’s skills using genetic
algorithm,” in 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE), Oct. 2015, pp. 535–536.
https://doi.org/10.1109/GCCE.2015.7398674

[12] A. Sarkar, Z. Yang, and S. Cooper, “Controllable level blending between games using variational autoencoders,” arXiv preprint
arXiv:2002.11869, 2020. https://doi.org/10.48550/arXiv.2002.11869

[13] S. M. Lucas and V. Volz, “Tile Pattern KL-Divergence for Analysing and Evolving Game Levels,” in Proceedings of the Genetic and Evolutionary
Computation Conference, in GECCO ‘19. New York, NY, USA: Association for Computing Machinery, 2019, pp. 170–178.
https://doi.org/10.1145/3321707.3321781

[14] R. A. Pambudi, W. Lubis, F. R. Saputra, H. P. Maulidina, and V. N. Wijayaningrum, “Genetic Algorithm for Teaching Distribution based on
Lecturers’ Expertise,” Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, vol. 4, no. 4,
pp. 297–304, Oct. 2019. https://doi.org/10.22219/kinetik.v4i4.859

[15] Nery Bandeira, I. et al. (2022). Dynamic Difficulty Adjustment in Digital Games: Comparative Study Between Two Algorithms Using
Electrodermal Activity Data. In: Fang, X. (eds) HCI in Games. HCII 2022. Lecture Notes in Computer Science, vol 13334. Springer, Cham.
https://doi.org/10.1007/978-3-031-05637-6_5

[16] J. Pfau, J. D. Smeddinck, and R. Malaka, “Enemy Within: Long-Term Motivation Effects of Deep Player Behavior Models for Dynamic Difficulty
Adjustment,” in Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, in CHI ‘20. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 1–10. https://doi.org/10.1145/3313831.3376423

[17] M. Zohaib, “Dynamic Difficulty Adjustment (DDA) in Computer Games: A Review,” Advances in Human-Computer Interaction, vol. 2018, p.
5681652, Nov. 2018. https://doi.org/10.1155/2018/5681652

[18] A. B. Harisa and W. K. Tai, “Pacing-based Procedural Dungeon Level Generation: Alternating Level Creation to Meet Designer’s Expectations,”
International Journal of Computing and Digital Systems, vol. 12, no. 1, pp. 401–416, 2022. https://doi.org/10.12785/ijcds/120132

[19] B. M. F. Viana and S. R. dos Santos, “A Survey of Procedural Dungeon Generation,” in 2019 18th Brazilian Symposium on Computer Games
and Digital Entertainment (SBGames), 2019, pp. 29–38. https://doi.org/10.1109/SBGames.2019.00015

[20] A. B. Moghadam and M. K. Rafsanjani, “A genetic approach in procedural content generation for platformer games level creation,” in 2017 2nd
Conference on Swarm Intelligence and Evolutionary Computation (CSIEC), 2017, pp. 141–146. https://doi.org/10.1109/CSIEC.2017.7940160

[21] A. Sarkar, R. Padte, J. Cao, and S. Cooper, “Desire Path-Inspired Procedural Placement of Coins in a Platformer Game,” in Joint Proceedings
of the AIIDE 2018 Workshops co-located with 14th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2018),
Edmonton, Canada, November 13-14, 2018, J. Zhu, Ed., in CEUR Workshop Proceedings, vol. 2282. CEUR-WS.org, 2018.

[22] A. Summerville and M. Mateas, “Super Mario as a String: Platformer Level Generation Via LSTMs,” CoRR, vol. abs/1603.00930, 2016.
https://doi.org/10.48550/arXiv.1603.00930

[23] B. Piller, C. Johanson, C. Phillips, C. Gutwin, and R. L. Mandryk, “Is a Change as Good as a Rest? Comparing BreakTypes for Spaced Practice
in a Platformer Game,” in Proceedings of the Annual Symposium on Computer-Human Interaction in Play, New York, NY, USA: ACM, Nov.
2020, pp. 294–305. https://doi.org/10.1145/3410404.3414225

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/2336727.2336747
https://doi.org/10.22219/kinetik.v4i1.713
https://www.theesa.com/resource/2022-essential-facts-about-the-video-game-industry/
https://store.steampowered.com/category/action_run_jump/
https://doi.org/10.1177/1046878105282278
https://doi.org/10.1007/978-3-030-37643-7_12
https://ojs.amikom.ac.id/index.php/semnasteknomedia/article/view/1297
https://ojs.amikom.ac.id/index.php/semnasteknomedia/article/view/1297
https://doi.org/10.1145/3402942.3402945
https://doi.org/10.1109/T-AFFC.2011.6
https://doi.org/10.1109/GCCE.2015.7398674
https://doi.org/10.48550/arXiv.2002.11869
https://doi.org/10.1145/3321707.3321781
https://doi.org/10.22219/kinetik.v4i4.859
https://doi.org/10.1007/978-3-031-05637-6_5
https://doi.org/10.1145/3313831.3376423
https://doi.org/10.1155/2018/5681652
https://doi.org/10.12785/ijcds/120132
https://doi.org/10.1109/SBGames.2019.00015
https://doi.org/10.1109/CSIEC.2017.7940160
https://ceur-ws.org/Vol-2282/EXAG_117.pdf
https://ceur-ws.org/Vol-2282/EXAG_117.pdf
https://ceur-ws.org/Vol-2282/EXAG_117.pdf
https://doi.org/10.48550/arXiv.1603.00930
https://doi.org/10.1145/3410404.3414225

