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Digital game genre such as Action-Platformer is widely popular among buyers 
on a platform like Steam. The non-playable character enemies in the game are 
important in action games. Unfortunately, they usually have static attributes like 
health points, damage, and enemy movement. Using the combination of 
procedural content generation and dynamic difficulty adjustment with a 
classical genetic algorithm, we drive the threat value of a platform to construct 
the enemy status, resulting in more dynamic enemies. We use the threat value 
as an input parameter calculated from the enemies’ stats in every platform, 
such as total damage that the enemy might produce, the player’s health point, 
and the enemy’s movement speed. We conclude that using a classical genetic 
algorithm may produce dynamic enemy status through the desired threat or 
danger set by the game designer as an input parameter. Moreover, the game 
designer may limit the generation with constraints. 

 
1. Introduction 

A digital game is a game that is played on a computer-based platform, the interaction between a human who 
seeks pleasure and a machine that provides the interaction [1]. In today’s game industry, in the Action category, the 
platformer is one among popular sub-genres [2]. According to data published by the Entertainment Software Association 
(ESA), the Action-Adventure Platformer game genre from 2017 to 2022 was in America’s top 5 biggest sales [3], [4]. 
Platformer is separated into several subs, including, but not limited to, 2D Platformers, Precision Platformers, Puzzle 
Platformers, and Runner. Some new categories are rising from the old game, say Metroidvania, now considered a 
separate, independent sub-category [5]. Since 2020, more than 51 games have contained “Platformer” in their title on 
Steam, and now 395 games are under the platformer genre.  

One of the reasons why platformer games are popular is because the avatar on the game connects the player to 
the virtual environment through a digital (imaginative) identity [6]. In platformer games, providing challenge and danger 
to players is critical [7]. One of the popular approaches from the game designer is placing the Non-Playable Character 
(NPC) like an enemy on the platform where the player moves as progresses in the game. Unfortunately, suppose the 
player has played the game several times. In that case, they already build a rigid strategy since the enemy status is 
always the same every time they play, which reduces the game dynamic. We can use a familiar method such as dynamic 
difficulty adjustment (DDA) to simply change the NPC’s attributes without bothering about their different appearances 
[8], or procedural content generation (PCG) to make the enemy more dynamic or even adaptive [9]–[11]. One way is to 
generate the status of the enemies differently every time player plays the game, such as the enemy’s health point (HP), 
speed, and damage produced.  

Various DDA and PCG techniques can be used to generate dynamic danger in platformer games [12]-[17]. For 
example, we can use advanced techniques like machine learning, an evolutionary algorithm like a genetic algorithm 
(GA), or even as simple as a finite state machine (FSM). GA is one of the popular techniques in game research since 
it is the heuristic algorithm to find the optimal solution to a problem [9], [11], [14].  

This paper shows how to minimize the boring, predicted experience by generating enemy status dynamically in 
a platformer game by constructing the danger perceived by players using classical GA. Our research is inspired by the 
PCG implementation among the research to provide a dynamic experience through the contents, for instance, the 
enemy. Although our research is strongly related to DDA, we are not only focused on the difficulty adjustment. Similar 
to [18], we can also provide the generation of contents and the constraints. For instance, the types of enemies (and 
their appearances), their positions, and more. Because the game’s difficulty is in the game mechanics, and the 
mechanics itself is one of the game contents, then we may say that procedurally generating a dynamic difficulty on the 
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NPC is also a topic in PCG. Section 1 explains the research motivation and relevant works. Section 2 provides the main 
methodology. Section 3 contains the experimental results and discussions. Finally, section 4 presents the conclusions.  
 
1.1 Dynamic Enemy 

As we mentioned earlier, by using PCG, we can provide the player with experience to increase engagement. 
Here we show the related work to our research, using PCG to generate the intended level by the game designer. 
Dynamic enemy is a term in the video game used to describe that the enemy in it can change and adapt dynamically 
towards the given configurations, resulting in the NPC enemies can adapt in different situations and increasing player’s 
engagement. However, the goal is to ensure that the difficulty fits the player according to their performance and keeps 
them motivated to play the game [16].  

One example of dynamic enemy implementation is an adaptive enemy which will adapt to player performance 
[16], [17]. For instance, if a player with a high-performance score, say, kills many enemies or completes the tasks in a 
short period, the higher chance the game will evolve the provided enemy to increase the difficulty, enhancing the 
damage, speed, base health points, and may result in more advance strategy needed to defeat. In contrast, when the 
player is facing a defeat, the system reduces its difficulty by lowering the movement speed and damage of enemy. It 
ensures the game is still challenging based on any player progressing in the game.  

 
1.2 PCG in Platformer Games 

A platformer game is a video game genre where the player can move on an environment (platform) to take the 
player to reach the goal. The platform in the platformer game can be a flat, linear path to uneven, moving parts [8]. In 
our study, the platforms used are shown in Figure 1 and Figure 7, where in on each platform, there are enemies and 
other properties related to the game environment. The platforms used have a box shape since our game is a 3D 
platformer with a little bridge between platforms.   

Procedural Content Generation (PCG) is a content creation process in the game automatically using the 
mathematic procedure or algorithm, such as game levels, items, character cosmetics, enemies, and more [19]. The 
goal is to help the developer build a massive amount of various content alternatives, avoiding manual work. Studies on 
implementing the PCGs techniques have been published.  

Moghadam and Rafsanjani in [20] uses GA to generate and evaluate rhythms from creating 2D runner platformer 
levels. First, they generate rhythms using GA, then use the resulting rhythm patterns to generate the level ’s geometry, 
and finally decorate the level with props. Sarkar et al. developed a system to automatically place collectible coins in 
platformer games based on the desired path [21]. They use the player’s trajectories to detect the desired path. Their 
study focused on placing the coins on the path so the player can naturally move while collecting them in a platformer 
game.  

The use of LSTM (long-short term memory recurrent neural network) has been shown to generate Super Mario’s 
level alternatives with the help of the snaking-depth-path approach [22]. Snaking is an alternative approach where 
instead of handling the platformer data as a sequence of objects bottom-to-top individually, we consider it continuous 
columns. Therefore, it can be bottom-to-up on the predecessor column and top-to-bottom on the next one. Similar to 
the previous study, their study uses player path trajectory as path information for level generation. Finally, the depth of 
the approach means they consider 12 past columns as information for LSTM to remember. To make it more interesting, 
they increase the emergence of special objects after every four columns.  

While the studies focus on rhythm patterns and player trajectory to generate a platformer level, [18] uses GA to 
drive the level generation with pacing aspects as parameters. Pacing aspects such as threat, movement impetus, and 
tempo are intuitively designed and calculated to predict the game flow. The authors provide a simple and intuitive curve-
based user interface to represent the pacing curves on a game level. Our research borrows the threat aspect to be a 
driver to generate the enemies’ status. The original concept was applied to the dungeon, rogue-like game. However, as 
stated in their paper, we may still implement the concept since the threat aspect is calculated differently according to 
the game design, including the game’s genre.  

Dynamic enemy is a term in the video game used to describe that the enemy in it can change and adapt 
dynamically towards the given configurations, resulting in the NPC enemies can adapt in different situations and 
increasing player’s engagement. However, the goal is to ensure that the difficulty fits the player according to their 
performance and keeps them motivated to play the game [16]. 

 
2. Research Method 

Our study focuses on providing a player with dynamic enemies on a platformer game using a classical genetic 
algorithm, especially to evolve the enemies’ status as designed by the game designer using one of the pacing aspects, 
threat. The threat aspect mostly discusses the danger on a platform chunk that emerge from the enemies. In summary, 
the input of our system is the original status of enemies, then modified with GA by calculating the threat value on each 
platform.  
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In this study, we borrow the concept of pacing aspects [18] and focus only on the threat. Since the threat 
implementation in every game genre varies, we modified the threat calculation as shown by Equation 1, Equation 2, 
and Equation 3. We normalize the threat value so that the designer can easily configure it and the constraints. We 
collect data through a literature study, questionnaire, and experiments. Through literature study, we search for what 
minimum criteria for making a platformer level. The platformer contains player objects, chunks of the platform, collectible 
items, obstacles and enemies, and finally, a finish point [8], [18], [22], [23]. 

In later section, we conducted user studies by asking seven students in Intelligent System Laboratory, Universitas 
Dian Nuswantoro, to fill out the questionnaire after they played generated game level. Furthermore, we will compare 
the questionnaire data and the recorded gameplay data to find a conclusion.  

 

 
Figure 1. Our system’s overview to generate dynamic enemy status 

 
2.1 Input Parameters  

Procedural Content Generation (PCG) is a content creation process in the game automatically using the 
mathematic procedure or algorithm. We create a dynamic enemy with a generator based on the threat value as a fitness 
target for genetic algorithm. Since we are focusing only on the threat produced by the enemy in the platforms, the level 
of space or geometry itself can be produced manually or automatically using our previous study [18]. For this study, we 
will provide a player with five main platforms and one boss platform. Please note that the equations below are seen 
from the enemy’s threat perspective. The output of our system is also a chunk of platform where the enemies’ status 
and number might be modified by the system. We are highly focus on generating the enemy status based on the 
designer’s target threat automatically. Therefore, the designer does not need to manually craft the enemies in every 
platform. The designer just needs to set the target threat, and then the enemies’ status are changed accordingly.  

 
2.1.1 Damage  

First, we modified the metrics and used the minimum parameters possible to implement the concept for various 
game genres easily. Total damage produced by the enemy is a significant parameter as input for our system, indicating 

the threat for the player. According to Equation 1, the effectiveness of total damage 𝑓𝐷𝑚𝑔𝐸 is the result of damage of 

every enemy in a platform 𝐷𝑚𝑔𝐸 multiplied by the attack frequencies 𝐴𝑓𝐸 then divided by player HP 𝐻𝑃𝑝.  

 

𝑓𝐷𝑚𝑔𝐸  =  ∑
𝐷𝑚𝑔𝐸𝑖 × 𝐴𝑓𝐸𝑖

𝐻𝑃𝑃

𝑛𝐸

𝑖=1

 (1) 
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2.1.2 Health Point  
The base level of the player’s health point is also a crucial factor contributing to the threat perceived by the player. 

Therefore, the player’s hp ratio to the enemy’s hp is also essential. The effectiveness of enemy’s HP is shown with 𝑓𝐻𝑝𝐸 

which calculated from total enemies HPs 𝐻𝑝𝐸 divided by player’s HP 𝐻𝑃𝑃.  
 

𝑓𝐻𝑝𝐸  =  ∑
𝐻𝑝𝐸𝑖

𝐻𝑃𝑃

𝑛𝐸

𝑖=1

 (2) 

 
2.1.3 Movement Speed   

Finally, the effectiveness of the enemy’s movement speed compared to the player’s is also considered as it also 

contributed to the threat for the player. 𝑓𝑀𝑜𝑣𝑒𝐸  is calculated from the ratio player’s speed 𝑆𝑝𝑃 compared to enemies’s 

speed 𝑆𝐸𝑖.  

 

𝑓𝑀𝑜𝑣𝑒𝐸  =  ∑
𝑆𝐸𝑖

𝑆𝑝𝑃

𝑛𝐸

𝑖=1

 (3) 

 
2.2 Genetic Algorithm  

We run our GA for a single platform on the game scene. The number of the run is dependent on the number of 
target solutions for each platform. The flow of our GA is shown in Algorithm 1. We use the classical genetic algorithm 
to find the fittest solution represented as chromosomes. Here is how it works:  
Input: The input to the algorithm is a sample platform samplePlatform where the enemies lie (it includes the enemies). 

The sample platform is then converted as a chromosome c, a solution individual.  
Step 1: Initialize the while loop. The algorithm continues to iterate until the maximum fitness from the best chromosome 
in the population C (denoted as MaxFit(C)) reaches a specified fitness target fitTarget.  
Step 2: For each iteration of the while loop, generate a new population C by cloning and mutating the existing individuals 

in the population as many as determined by nc. 

Step 3: Update the population C with the newly generated individuals (clones) by adding them to the existing population. 
Step 4: Calculate the maximum fitness among the individuals in the population C and select it as the current fittest 

individual sc.  

Step 5: Perform crossover (denoted as Cross( )) between the highest-fitness individual sc and each individual in the 
population C with a probability of r (random number) < cRate, that is 0.05. 

Step 6: Perform mutation (denoted as Mut( )) on each individual in the population C with a probability of r < cRate, also 

0.05, using the highest-fitness individual sc as a reference.  

Step 7: Repeat steps 2-6 until the maximum fitness of the population MaxFit(C) reaches the fitness target. 
Step 8: Once the fitness target is reached, return the maximum fitness of the final population C as the algorithm’s output. 

 
In summary, this algorithm uses genetic operations like cloning, crossover, and mutation to evolve a population 

of individuals towards a threat calculated using Equation 1, Equation 2, and Equation 3 as a fitness target. Then, the 
algorithm iteratively generates new individuals, updates the population, performs genetic operations, and repeats the 
process until the fitness target is achieved. 

 

Algorithm 1. The Flow of GA in our system.  

s ← samplePlatform 
c ← s 
while MaxFit(C) < fitTarget do:  
    for i = 0 to nc do:  
        c ← Mut(clone(c))  
        C ∪ {c} 
    sc ← MaxFit(C)  
    ∀c ∈ C, c ← Cross(sc, c), r < cRate  
    ∀c ∈ C, c ← Mut(sc, c), r < mRate  
return MaxFit(C)  
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3. Results and Discussion 
3.1 Experiments  

Our initial experiments use 30, 50, and 100 generations as genetic parameters with 25, 50, and 100 
chromosomes in the populations. Figure 2 and Figure 3 shows the result averaged fitness of five runs. However, 
according to the result of experiments, using 30 generations produces the worst fitness, and the best fitness showed 
when using 100 generations and 100 chromosomes. Therefore, we use 100 generations and 100 chromosomes each 
to ensure the fitness converges in the expected iteration numbers and to avoid low-quality solutions resulting from the 
low number of generations or individuals.  
 

 

 
Figure 2. The ftness of using 25, 50, and 100 population size with 50 generations each 

 

 
Figure 3. The fitness of using 25, 50, and 100 population size with 100 generations each 

 
In our further experiments, we construct a platformer level using eight big platform chunks in the level experiment. 

Using the genetic parameter obtain from initial experiment, the GA will run on each platform individually. The designer 
can set the target threat as a fitness target and constraints such as the max value of any status attribute from enemies. 
Table 1 shows that the generated enemies’ errors are low. The highest error rate was observed at platform 8. It is 
because we configure the constraints for all platforms uniformly, sometimes making the solution hard to converge. 
However, as mentioned in [18], adjusting the constraints can easily address such cases. Moreover, the space layout 
and properties, as mentioned before, will also have an impact on the error. Fortunately, we did not consider such 
attributes to be calculated. From Table 1, we set the lowest target threat to 0.1 on platform 1 and 0.9 on the boss 
platform. We intuitively categorize the threat as easy (0-0.3), medium (0.31-0.6), and hard (0.61-1) difficulty.  

 
Table 1. Fitness differences from platforms 

Platform Target Threat Avg. Fitness Avg. Error Rate 

1 0.1 0.999 0.13% 
2 0.2 0.998 0.24% 
3 0.3 0.998 0.18% 
4 0.4 0.997 0.28% 
5 0.5 0.996 0.37% 
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6 0.6 0.989 1.12% 
7 0.7 0.984 1.58% 
8 0.8 0.960 3.98% 

Boss 0.9 0.997 0.31% 

 Avg. 0.991 0.91% 

 
3.2 User Study  

In this user study, we record the seven players’ gameplay data and ask them to complete the questionnaire. 
Figure 4 shows the average duration (elapsed time) played by players. In Figure, 4, Figure 5, and Figure 6, the green 
bar depicts the easy difficulty, the yellow means medium, and the red is the hard difficulty. According to the threat 
configuration in Table 1, higher threats result in a longer time played by the players on a platform. In an easy setting, 
the players spent 27 seconds on average. While on the medium platforms, they spent 72 seconds and 144 seconds on 
hard platforms. So the ratio of elapsed time between easy:medium:hard is 1:3:6. The average elapsed time in the boss 
platform is significantly higher because players tend to patiently attack with certain strategies to avoid critical damage.  
 

 
Figure 4. The comparisons of elapsed time by player across platforms 

 

 
Figure 5. The comparisons of player’s remaining HPs across platforms 

 
Figure 6 shows the players’ responses to the difficulty of the platforms. All players agree that the early platform 

1 and 2 is easy to play, platform 3 to 5 are medium, and 6 to 8 are hard to play. However, again, there is an anomaly 
on the boss platform because some players have been defeated several times, and they need to replay the platform, 
and some other players wait very patiently to attack the boss enemy. That is why in Figure 4, the players spent 
significantly longer time, resulting in players sharing their difficulty perceptions differently to respond, as shown in Figure 
6. The actual players’ perception of threat perfectly fits our expectations on platforms 1, 2, 7, and 8. Platforms 4 and 5, 
respectively, show 71.4% and 57.1% towards our expectations. In contrast, platforms 3 and boss show low scores, 
below 50%. Still, the average player experience of our designed threat is 71%. Figure 7 shows the capture of our 
platformer game, which we have developed using Unity’s asset.  
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Figure 6. The questionnaire results from players across platforms 

 

 
Figure 7. The screenshot of platform 4 in our platformer game. The figure shows the enemies’ attributes, such as 
health point (HP), Damage (DMG), and speed (SPD). The free assets are downloaded from Unity Asset Store. 

 
4. Conclusion 

In this study, we construct the player experience in a platformer game, focusing on the concept of threat by 
modifying the enemy status in each platform with a genetic algorithm. We use enemies’ damage, HP, and movement 
speed as input parameters to drive our system. To calculate the threat value as one of the pacing aspects, we modify 
the original one in [18] for a dungeon, rogue-like level, to a platformer level. The flow of our GA is straightforward. We 
create a population from a sample platform, then select the best individual and perform crossover and mutation with a 
certain probability rate within iterations. After the fitness threshold is reached, the GA produces the best solution.  

We performed experiments to seek validation of our concept. First, we configured the threat between platforms 
in a level to be 0-0.3 (easy), 0.31-0.6 (medium), and 0.61-1 (hard). The average fitness of using those settings is 0.99, 
and the error rate is 0.91%. Next, we performed the user study by asking them to play a level containing nine platforms, 
including the boss platform. The recorded gameplay data and responses from the players are then analyzed, which are: 
1) higher threat results in longer elapsed time, 2) higher threat results in higher damage produced by enemies, and 3) 
more than 71% of players’ responses agree with the designed threat provided in the testing session. To conclude, we 
provide early work in a platformer game to provide the expected player experience using one of the pacing aspects, a 
threat, as a basis.  

There are some notable limitations of our work. First, we focus only on one aspect of pacing, threat, and 
implement it on a platformer game which differs from the original concept (dungeon level). In the other more complex 
genres, more parameters must be considered as input to drive the system. This research is part of our roadmap to build 
a generative system for various game genres using pacing patterns aspects to drive the generation process. Our 
suggestion for further research is: 1) more experiments to validate and measure the generated level needed to perform, 
2) the threat patterns can be presented with various representations, such as graph grammar, 3) the platforms can be 
built to be more dynamic and less linear (platform options in different vertical height).  
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