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Every mobile robot mission starts with the robot being moved to the task site. 
From there, the robot executes its tasks. A control system is required to move 
the mobile robot's actuator (which may be in the shape of wheels or legs) and 
comprehend the environment around the robot to perform these movements 
(perception). This research aims to develop a technique to control a robot’s 
movement while detecting obstacles and distances toward an object. The robot 
is equipped with LIDAR and a camera to perform these tasks. The control is 
divided into two major parts, low-level and high-level controller. As part of a 
low-level controller robot, the Model Predictive Control (MPC) method is 
proposed to help with the control of wheel while the Artificial Neural Network 
(ANN) approach to use in this study to identify obstacles and the Convolutional 
Neural Network (CNN) method for detecting objects, both ANN and CNN as 
control for high-level part of the robot. The results of this study can prove that 
CNN can help detect existing objects with a value 45% for detecting an object. 
The obtained result from the MPC method, which has been combined with a 
ANN as an obstacle detector, is that the smaller the horizon value, the shorter 
the time needed to reach the desired coordinates with the result being 45 
seconds. 

 
1. Introduction 

Autonomous vehicle research has grown significantly over the last few decades. The Unmanned Ground Vehicle 
is an illustration of an autonomous vehicle (UGV). Path tracking and path following are two examples of how it carries 
out its mission. UGVs are furnished with a number of parts, including a frame, motor, controller, and battery[1]. Operating 
a UGV requires complex control and navigation procedures[2]. When using its sensors to navigate autonomously, the 
UGV's location must always be known. LIDAR (Light Detection Ranging), IMU (Inertia Measurement Unit), GPS (Global 
Positioning System), UWB (UltraWide Band), and other sensors are some of the sensors utilized to enable the 
navigation of a UGV[3]. LIDAR, one of these sensors' features, is utilized to identify impediments while the IMU is used 
to provide information on speed, orientation, and gravity using a combination of accelerometer, gyroscope, and 
magnetometer. 

Researchers have suggested a number of navigational techniques. Lane Keep Assist (LKA) and collision 
avoidance are two components of the navigation system known as Advanced Driving Assistance Systems (ADAS)[4]. 
The LKA feature is required to prevent the car from veering off course. On the other hand, if there are obstructions in 
the way that the vehicle is traveling, collision avoidance is a feature to avoid [5]. The vehicle can avoid collisions and 
crashes thanks to the collision avoidance sensor feature. Contrarily, the LKA requires a low-level controller with strong 
capabilities in order for the motor to follow the path indicated by the robot navigation system [6]. In other studies, one 
of the methods that can be used as collision avoidance is the Artificial Neural Network (ANN) method, where this method 
can be used as a support for the navigation system of a mobile robot, of course this cannot be separated from the use 
of qualified sensors such as LIDAR sensors [7]. 

In other works of literature, numerous investigations have investigated various control strategy theories and 
methods. For instance, research that integrated the PID (Proportional Integral Derivative), LQR (Linear Quadratic 
Controller), and MPC (Mode Predictive Control) control techniques discovered the benefits of the MPC method over 
others [8]. The peak amplitude obtained with MPC has a shorter time, according to other studies, and MPC is preferable 
to PID and LQC (Linear Quadratic Controller) controllers in terms of optimizing DC motor speed [9]. The three control 
methods have different settling time outcomes [10]. Convolutional Neural Networks (CNN)-based machine learning has 
emerged as the industry standard for a variety of computer vision tasks, including those carried out by mobile robots[11]. 
One deep learning method for identifying content images is CNN, which has shown good performance in image 
segmentation, classification, detection, and retrieval related tasks [12] The performance of the CNN method can also 
be seen in YOLO (You Only Look Once) [13]. 
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In this research, the UGV will be represented by a mobile robot that described in the research methods section. 
The UGV will rely on LIDAR and camera for perception as the primary sensor. The main weakness of the camera is its 
unreliability in dealing with changes in lighting, as well as the low accuracy for estimating the distance which is the main 
requirement in carrying out movements. Combining information from several types of sensors is expected to overcome 
these weaknesses. To carry out this movement, a control method is needed to move the mobile robot actuator (in the 
form of wheels). By combining the results of previous studies, such as the superiority of MPC compared to PID or LQR, 
a neural network that can be used as a collision avoidance method and CNN that can detect and recognize objects 
around it, this research will develop an MPC method to regulate the movement of mobile robots based on LIDAR sensor 
and camera using machine learning-based artificial intelligence techniques.  

 
2. Research Method 

In this research, it is broadly divided into two sub-chapters which here will explain the use of the proposed 
methods such as ANN, CNN and MPC control. This section also describes the outline of the research to be carried out. 

 
2.1 Outline of the Research 

According to the caption of Figure 1, the robot navigation system implemented in this research consists of three 
key stages: the neural network stage, the YOLO stage, and the control technique (MPC) stage. The process of creating 
a neural network first gets the datasets ready for processing and training. On the CNN section, this following section is 
use YOLO weights to detect objects, and the last step is to use the MPC method to control the motors. We employ the 
neural network's data set as a trained weight to move toward the coordinate target, with the output controlling the motor. 
The MPC method is used to regulate the motor's speed, both linearly and angularly. 

 

 
Figure 1. Outline of the Method and Stages used in this Research 

 
2.2 RVIZ and Gazebo 

The Gazebo simulator, created by Open Robotics, was utilized in this study to help algorithm development for 
mobile robotics[14]. To establish the concept and illustrate the results of sensors, we used RVIZ. The simulation was 
distributed-run, and Gazebo was used to give planning and show how necessary sensors. The simulation used the 
Turtlebot mobile robot model as a UGV depicted in Figure 2 section (a), the figure also shows the location of the 
obstacles and the environmental model in the simulation. In Figure 2 in section (b), the LIDAR and camera components 
used in this UGV are also shown.  

 

             
(a)       (b) 

Figure 2. (a) Environmental Model in Gazebo and (b)Turtlebot Robot as UGV 
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Distance estimation is typically done using LIDAR [15]. It is made up of a laser, a rotating mirror that scans the 
surrounding area with the laser beam, and a detector that calculates an object's distance based on the laser's time-of-
flight. In this research, the Turtlebot LIDAR module is used. It has a maximum range of 3.5 meter, a resolution of 0.5 
degrees, and a scanning speed of 300 ± 10 rpm (revolutions per minute). It is mounted on the top of the UGV, allowing 
objects to stick out vertically above it. The visual displayed on RVIZ is in the form of LIDAR scan results, where the 
results are obtained from scanning the environment around the robot with an area of 360 degrees. Later, the values 
that will be processed by the method is the raw data in the form of numbers, not image forms as shown in RVIZ. Figure 
3 illustrates how the RVIZ program presents the LIDAR scanning results. 

 

 
Figure 3. LIDAR Scanning Result in RVIZ 

 
2.3 Kinematic Model of UGV 

The UGV's motion model is represented in Figure 4. It is made up of a vehicle frame, two drive wheels, and an 
axle-mounted front sliding blade. The UGV may change direction and speed by using its two driving wheels, each of 
which is powered by a separate motor. A vital part of a motion controller is a low-level MPC controller that regulates a 
UGV's motion [16]. 

 

 
Figure 4. Kinematic Model of UGV 

 
Wheel speed in Equation 1 and the formula of each velocity right and left in Equation 2. 
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Vehicle speed and heading rate equation. 
 

𝒗 =
𝒓

𝟐
(𝒗𝒓 + 𝒗𝒍) 

(3) 
𝒘 =

𝒓

𝟐𝒅
(𝒗𝒓 − 𝒗𝒍) 

 
 

Together with the robot axis, v represents the point up's linear velocity, and w represents the angle's angular 
velocity (Equation 3). The kinematics Equation 4 above therefore has the following definition. 
 

[
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𝒗
𝒘

] (4) 

 
 

Equation 4 represents the UGV's steering system. The main objective is the intended reference trajectory, which 
may control the system's course. The control algorithms are designed to generate sufficient left and right wheel speeds 
to move the mobile robot along the needed direction trajectories. It is intended that all of the vehicle's attributes will be 
measured using x, y, and θ. Therefore, the vehicle may be entirely controlled by the two inputs, v and w (the vehicle's 
rotational velocity and linear velocity). 

 
2.4 Artificial Neural Network (ANN) 

ANN is used as a method to train data obtained through LIDAR [16]. The data was gathered using LIDAR, which 
the robot uses for its perception system. The data obtained is in the form of a value for each degree where each degree 
has a value for the distance between the LIDAR and the obstacle (described in sub-section 2.2). However, as described 
in previous sub-section the data that is processed is in the form of numbers, not in the form of images . The raw data 
that obtained from LIDAR scanning results will be processed by a three-layer classifier neural network. The neural 
network has three layers with 40 nodes in input layer (IL) 100 nodes in hidden layer (HL) and 2 nodes in output layer 
(OL). Proposed neural network architecture is shown in Figure 5. 

 

 
Figure 5. Neural Network Method Flow and Architecture 

 
Experimentally determined hidden layer node counts are used. If no obstacles are found within 3.5 meter, the 40 

neurons' inputs are ordered to "infinity". Activation function is needed to activate each node, the activation function used 
in this research is Relu (Rectified Linear Units) and sigmoid function [17]. Two neurons in the Output Layer (OL), which 
determine the robot's velocity and steering angle, are activated using the sigmoid function. Relu are activated in 100 
neurons in the Hidden Layer (HL) according to Equation 5. 
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𝒇(𝒙) = {
𝟎, 𝒇𝒐𝒓 𝒙 <  𝟎
𝒙, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 (5) 

 
The neural network is trained to navigate by describing approximately 412 parameters. So on at the end of the 

layer there is an activation function in the form of a sigmoid function as in Equation 6. 
 

𝒇(𝒙) =
𝟏

𝟏 +  𝒆−𝒙
 (6) 

 
Where the value of this section will be continued to the controller section on the MPC.  The output we will get is 

in accordance with the following Equation 7 using the sigmoid function. 
 

𝒐𝒖𝒕𝒑𝒖𝒕 = 𝝈(∑𝒙𝒊𝒘𝒊  +  𝒃𝒊)

𝒏

𝒊=𝟎

 (7) 

 
Where xi , wi , bi and n are the inputs, weight vector, bias and  number of neurons, respectively. To evaluate and 

measure of success used in the ANN method is an evaluation matrix, where the matrix has several parameters [17], 
namely accuracy (Equation 8), precision (Equation 9), recall (Equation 10), and F1-score (Equation 11). A TP is an 
outcome where the classification algorithm accurately predicted the positive label. Similarly, if the algorithm properly 
predicts the negative label, a TN is the outcome of the classification. When the classifier predicts a negative class as 
positive, this is known as FP. The forecast of a positive label as a negative is represented by the final confusion matrix 
term, FN. The harmonic means of the precision and recall values is acquired in order to determine the proposed model's 
accuracy, the F1-score is calculated using the formula shown in equation (11) to determine the reliability of the model. 
 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
𝑻𝑵 + 𝑻𝑷

𝑻𝑵 + 𝑻𝑷 + 𝑭𝑵 + 𝑭𝑷
 (8) 

  

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 (9) 

  

𝑹𝒆𝒄𝒂𝒍𝒍 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 (10) 

  

𝑭𝟏 − 𝑺𝒄𝒐𝒓𝒆 =  
𝟐 ∗  𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗  𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 +  𝑹𝒆𝒄𝒂𝒍𝒍
 (11) 

 

2.5 You Only Look Once (YOLO) 
A single-stage object detection system called YOLO [18] is based on Deep Convolutional Neural Networks 

(DCNNs). A backbone layer and a detection layer make up YOLO. The output feature map is created by extracting 
features from the backbone layer [19]. Darknet is deployed as the backbone for the system. The detecting procedure 
will proceed on the output feature map.  

 

 
Figure 6. Cross Probability Map  

 

Figure 6 explains the detection method in detail. YOLO receives input photos that are mapped into SxS-sized 
grid cells. The bounding box must be predicted for each grid cell with a confidence score and class probability [20]. Five 
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parameters x, y, w, h, confidence, and class probability—as well as Class probability prediction are included for each 
predicted box. In the representation, w and h stand for the bounding box's width and height, x and y for the center's 
coordinates, and C for the conditional class probability. The explanation of Class Probability Representation is given in 
Equation 12. 
 

𝑪𝒍𝒂𝒔𝒔 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚 =  𝑷𝒓 (𝑪𝒍𝒂𝒔𝒔𝒊 | 𝑶𝒃𝒋𝒆𝒄𝒕) (12) 
 

The conditional class probabilities in Equation 12 are conditioned on grid cells containing objects, and the 
confidence score reflects how sure the bounding box contains objects, and how accurate the bounding box is according 
to estimates [8]. The confidence score is represented Equation 13. 
 

𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆 𝒔𝒄𝒐𝒓𝒆 =  𝑷𝒓 (𝑶𝒃𝒋𝒆𝒄𝒕)  ∗  𝑰𝒐𝑼 (𝒕𝒓𝒖𝒕𝒉 𝒑𝒓𝒆𝒅𝒊𝒄𝒕) (13) 
 

In (9), Pr(Object) displays the likelihood that an object will be within the bounding box, and IoU (Intersec over 
Union) predic displays the intersection of the ground truth box and prediction box (IoU). IoU has a susceptible value 
between 0 and 1. If the IoU value is close to 1, it means that the bounding box prediction is accurate and close to the 
ground truth value. If the IoU value above the threshold, then the prediction of the bounding box containing an object is 
correct. IoU is frequently used to assess the accuracy of the object detection from the set threshold value. The IoU 
threshold value is often set by default to be 0.3. To find out how the performance of the hardware used, measurements 
can be made with FPS (Frame per Second), here is a equation to find out FPS Equation 14). 
 

𝑭𝑷𝑺 =  𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑭𝒓𝒂𝒎𝒆 / 𝑷𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈 𝒕𝒊𝒎𝒆 𝒊𝒏 𝒔𝒆𝒄𝒐𝒏𝒅 (14) 
 
2.6 MPC 

Model predictive control (MPC), is a control technique, to try to predict the system's behavior across a finite time 
window, called the horizon[21]. The optimal control inputs with regard to a specified control target and subject to system 
restrictions are determined based on these predictions and the present measured/estimated state of the system. The 
procedure of measuring, estimating, and computing is repeated after a predetermined amount of time with a shifting 
horizon [22]. 
 
To sets the objective of the optimal control problem, introduce the following cost function. 
 

𝑱(𝒙, 𝒖 , 𝒛) = ∑(𝒍(𝒙𝒌, 𝒛𝒌, 𝒖𝒌, 𝒑𝒌, 𝒑𝒕𝒗,𝒌) + (∆𝒖𝑹
𝑻𝑹∆𝒖𝒌) +

𝑵

𝒌=𝟎

𝒎(𝒙𝑵+𝟏) (15) 

   

Equation 15 is used to set the lagrange term (𝒍(𝒍𝒍, 𝒍𝒍, 𝒍𝒍, 𝒍𝒍, 𝒍𝒍𝒍,𝒍)(lterm) and meyer term 𝒍(𝒍𝒍+𝒍) (mterm), where 

N is the prediction horizon [23]. The values of parameter we used in mterm is 0.7 and lterm is 0.3. 
When set the penalty factor for the inputs, the Equation 16 and Equation 17 referring to the input names in model 

and the penalty factor as the respective value. Define for i ∈  II, where I is the set of inputs and all k=0,…,N where N 
denotes the horizon. 
 

∆𝒖𝒌,𝒊 = 𝒖𝒌,𝒊 − 𝒖𝒌−𝟏,𝒊 (16) 

  

∑ ∑𝒓𝒊∆

𝒊∈𝑰

𝑵

𝒌=𝟎

𝒖𝒌,𝒊
𝟐  (17) 

 
In this research we set rterm, lterm and the weighted squared cost to the MPC as objective function (Equation 15). 
 
3. Results and Discussion 

This section presents the results of the experiments conducted. As previously mentioned, the results are divided 
into several categories, namely how the data training results are presented by ANN, the detection results obtained by 
CNN, and how the MPC control works. 

 
3.1 Neural Network and Training Result 

Without human involvement, mobile robots have to adapt their environment. It must be capable of collecting 
environmental data. So, to scan the working area, we suggest using a LIDAR with a range of 3.5 meters and a field of 
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view of 40 degrees. The environment model changes every time an object identification scan is carried out. Robots can 
calculate the distances between barriers. The architecture of our algorithm is shown in Figure 5. 

Before using the dataset, training and data validation are required. In this research, KFold Cross validation was 
used as a validation method. Kfold cross validation is used to evaluate the validity of the derived model from the dataset 
received from LIDAR. The dataset utilized is split into 90% train data and 10% test data on kfold, where the value used 
for the k variable is 10. Additionally, it shows that 10 iterations of kfold were performed using the dataset obtained from 
LIDAR. The processed data's results are shown in Table 1. 

 
Table 1. Score of KFold 

 
 

 
 

 
 
   

The network is trained and calculate 1000 data, and at various epochs, the efficiency objective is achieved. Figure 
7 is the result of the graph obtained through training. 

 

    
(a)                                                         (b) 

Figure 7. (a) Model Accuracy and (b) Model Loss Graphic 
 

 The neural network training with the following parameters produced the graph above: epochs = 100, batch size 
= 8, and validation split = 0.2. According to Figure 7, each epochs resulted in reduced loss and increased acc (accuracy), 
Val_acc and loss start to increase as the model learns, indicating that the model was designed appropriately. Table 2 
contains the final score after the training, val_loss and val_acc values for the last epoch are displayed too. The metrics 
derived from the training and test datasets, respectively, are loss and val_loss. Similar to acc, val_acc refers to the 
accuracy result on the test dataset. For the most accurate representation of model performance, use val_acc. As a 
result, 0.73 val_acc value is chosen as the ANN's last performance in the research. 

 
Table 2. Final Score Obtained 

 
  
 
 
 
 
  

Several experiments were run to demonstrate the effectiveness of the suggested strategy, and the results were 
presented using some common matrices like classification accuracy, precision, recall, and F1-score regarding to 
equation 8, 9, 10, and 11. When making predictions in novel settings, this can help to identify the model's advantages 
and disadvantages. The model performance of the suggested approach is crucial for machine learning. The findings 
from the parameters described, are summarized in Table 3. 

 

KFold Cross Validation 

No. Test 1 2 3 4 5 

Value 0.87 0.81 0.83 0.81 0.84 
No. Test 6 7 8 9 10 

Value 0.81 0.81 0.89 0.84 0.85 

Parameter Value (%) 

Acc 0.83 
Val_acc 0.73 

Loss 0.32 
Val_loss 0.58 
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Table 3. Score Obtained 
 
  
 
 
 
 
 
3.2 Convolution Neural Network and Training Result 

The use of CNN is to find out the objects that are on the front of the robot, later this information is used to detect 
the type of the object [24]. The weights used are the weights from the YOLO V2 and YOLO V3 COCO (Common Objects 
in Context) datasets. The choice of YOLO as the object detection algorithm is because the mAP (mean average 
prediction) value of this algorithm outperforms several other methods such as SSD and Faster R-CNN [25]. The 
workings of the YOLO v3 Tiny network architecture used can be seen in Table 4. 

 
Table 4. YOLO v3 Tiny Network Architecture 

Layer Type Filter Size/Stride Input Output 

0 Convolutional 16 3 x 3 / 1 416 x 416 x 3 416 x 416 x 16 
1 Max Pooling  2 x 2 / 2 416 x 416 x 16 208 x 208 x 16 
2 Convolutional 32 3 x 3 / 1 208 x 208 x 16 208 x 208 x 32 
3 Max Pooling  2 x 2 / 2 208 x 208 x 32 104 x 104 x 32 
4 Convolutional 64 3 x 3 / 1  104 x 104 x 32 104 x 104 x 64 
5 Max Pooling   2 x 2 / 2 104 x 104 x 64 52 x 52 x 64 
6 Convolutional  128 3 x 3 / 1 52 x 52 x 64 52 x 52 x 128 
7 Max Pooling  2 x 2 / 2 52 x 52 x 128 26 x 26 x 128 
8 Convolutional 256 3 x 3 / 1 26 x 26 x 128 26 x 26 x 256 
9 Max Pooling  2 x 2 / 2 26 x 26 x 256 13 x 13 x 256 
10 Convolutional 512 3 x 3 / 1 13 x 13 x 256 13 x 13 x 512 
11 Max Pooling  2 x 2 / 2 13 x 13 x 512 13 x 13 x 512 
12 Convolutional 1024 3 x 3 / 1 13 x 13 x 512 13 x 13 x 1024 
13 Convolutional 512 3 x 3 / 1 13 x 13 x 1024 13 x 13 x 512 
14 Convolutional 425 3 x 3 / 1 13 x 13 x 512 13 x 13 x 425 
15 Detection     

 
Through the network architecture of YOLO method, the process carried out in this detection is passed through 

several stages of the convolution layer, namely from 416*416 pixels to 13*13 pixels [26]. The performance of the 
computer used is bflop/s ranging from 0.150 to 1.595 so this value affects the fps produced when the detection is carried 
out. In the simulation as shown below, there are 1 object that can be detected. An object is a traffic light that we can 
see in Figure 8. The percentage of object detection found in the simulation results is 45%.  

 

   
(a)                                                 (b) 

Figure 8. (a) Object Detected and (b) FPS Result and Object Detection in Percentage  
 

There are some speed differences when using YOLO, because there are 2 types of YOLO methods used. The 
basic difference between the two methods is the speed and accuracy when detecting an object. Tiny-yolov3 is a 
simplified version of YOLOv3, which has a much smaller number of convolution layers than YOLOv3, which means that 
tiny-yolov3 does not need to occupy a large amount of memory, reducing the need for hardware. And it also greatly 
speeds up detection, but lost some of the detection accuracy. The differences in fps are presented in the following Table 
5. 

 

Parameter Value (%) 

Precision 0.93 
Recall 0.84 

Accuracy 0.88 
F1-Scre 0.88 
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Table 5. Result of FPS 

Method FPS 

YOLO v3 - Tiny 2 
YOLO v3 0.7 

 
3.3 Model Predictive Control Result 

Signal inputs in the form of waypoint are used to simulate the MPC control system of the autonomous robot [27]. 
The robot controller must calculate the input control value that has been provided in order to arrive at the waypoint 
value, which serves as a reference value. 

In the autonomous robot system, prediction control is utilized to ensure that the car moves to the predetermined 
target coordinate [28]. The simulation that results receives numerous values, including the robot's speed and odometry. 
All initial values on the graph are not 0, as the robot does not begin at the 0.0 coordinate position (see the graphic in 
Figure 9,  10 and 11). The graph shows that x-coordinate odometry is represented by blue, whereas y-coordinate 
odometry is shown by red. While the colors green and yellow, respectively, represent linear velocity x and angular 
velocity z. By changing the value of N, as in equation (15) which is the horizon prediction value, here are some 
experimental results with various horizon prediction values ranging from 10, 25 to 30. 
 

 
Figure 9. Coordinate and Velocity Graph (Predicted Horizon Value 10) 

 

 
Figure 10. Coordinate and Velocity Graph (Predicted Horizon Value 25) 
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Figure 11. Coordinate and Velocity Graph (Predicted Horizon Value 30) 

 
In order to better validate performance, experiments were run with different horizon predictive value variables 

according to the values in Table 6, it was proven that these factors had an impact on MPC performance. Figure 9, 10 
and 11 show how the robot moves in accordance with predefined coordinates. The robot's beginning position is at x = 
-2 and y = -0.5, and its final position is at x = 1 and y = 2. The processing time required by a system to arrive at the 
desired coordinates will increase as the horizon value increases. Systems affected by a horizon value of 30 react slower 
than systems affected by other horizon values (10 and 25) as shown in Table 6. The problem can be solved by lowering 
the predicted horizon value. As the horizon prediction value decreases, the control time consumption decreases, as 
can be seen from the fluctuation of the position versus time graph in Figure 7 to 9. These results are summarized in 
Table 6.  

 
Table 6. Comparison of Horizon Value and Time of Achievement 

Prediction Horizon Time (sec) 

10 47 
25 74 
30 105 

 
4. Conclusion 

This analysis shows how the lateral and longitudinal positions of the robot can be adjusted by modifying the 
control system, commonly known as the robot's position and speed controller. These two factors are essential for 
making sure the car keeps moving in a way that will enable it to arrive at a particular coordinate location. Based on this 
description, the dynamics of the vehicle in three degrees of freedom are represented by the dynamic equations x, y, 
and theta. In the performance of the training results using the activation function values, the mobile robot obstacle 
avoidance approach utilizing the ANN algorithm demonstrated an accuracy score of 0.83 and a loss of 0.32 in the results 
acquired from the above mentioned experiments. Additionally, shortening the MPC's horizon value will enable it to reach 
the target sooner (45 seconds at a horizon value of 10). 

The fundamental weakness in using CNN in this research is the inability of the CPU used in the robot, so that the 
computation used cannot display the appropriate speed for use in real situations. This can be proven by the results of 
the fps value, which is only worth 2 FPS. 

 
Notation 
𝑥𝑥 = the states of the   𝑥𝑥  = control inputs   𝑥𝑥 = algebraic states  
m  = meyer term   xi = inputs    bi  = bias    
N  =  horizon value   TP = True Positive    TN = True Negative   
FN = False Negative  FP = False Positive   l = lagrange term  
wi  = weight vector   Vr  = Right wheel speed  v  = Vehicle speed  
𝑥𝑥  = uncertain parameters  x = Global vehicle x-position r  = Wheel radius 

𝑥tv,𝑥 = time-varying parameters  𝑥𝑥 = time-varying  measurements  Vl = Left wheel speed 

y = Global vehicle y-position θ  = Global vehicle heading w  = Vehicle heading angular 
velocity     wl  = Angular left wheel velocity  d = The distance between two 
driving wheels 
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