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Crop diseases have a significant impact on agricultural production. As a result, 
early diagnosis of crop diseases is critical. Deep learning approaches are now 
promising to improve disease detection. Convolutional Neural Network (CNN) 
models can detect crop disease using images with automatic feature 
extraction. This study proposes crop disease classification considering ten pre-
trained CNN models. Fine-tuning for each model was conducted on the Plant 
Village dataset. The experimental results show that fine-tuning improves the 
model's performance with an average accuracy of 8.85%. The best CNN model 
was DenseNet121, with 94.48% and 98.97% accuracy for freezing all layers 
and unfreezing last block convolution layers. Moreover, fine-tuning produces 
less time-consuming with an average of 2.20 hours. VGG19 is the less time-
consuming reduction by 8 hours. On the other hand, MobileNetV2 is the 
second-best performance model with less time-consuming than DenseNet121 
and produces fewer parameters, which is affordable for embedding it to mobile 
devices. 

 
1. Introduction 

Crop diseases are one of the leading causes of the decline in agricultural production. In recent years, various 
crop diseases have increased and affected the agricultural, economic, and health sectors. The disease generally 
generates noticeable marks or lesions on the crop leaves. Therefore, it is crucial to detect the presence of the disease 
at an early stage. However, traditional approaches are commonly used by most farms and plantations to recognize the 
disease. Consequently, it is time-consuming and leads to high costs and misdetection [1]. 

Hence, researchers have designed the Convolutional Neural Network (CNN) models as a computer-aided 
disease diagnosis. CNN models can overcome the problem of object recognition, and classification has significantly 
improved in the last decade [2], [3]. In recent years, CNN models have emerged as the most extensively used model in 
crop disease detection [3]–[10]. The CNN model can be applied from scratch or by using pre-trained designs. 
Promisingly, pre-trained CNN models outperformed the scratch designs. AlexNet was the first proposed pre-trained 
CNN model by [11] on the 1.2 million high-resolution images within the 1.000 different classes in the ImageNet LSVRC-
2010 contest. Furthermore, many CNN models were offered in the next contest ImageNet LSVRC.  

Recently, several pre-trained CNN architectures have been suggested, for example, GoogleNet [12], VGGNet 
[13], ResNet [14], InceptionV3 [15], DenseNet [16], Xception [17], MobileNet [18], InceptionResNetV2 [19], NasNet [20], 
and EfficientNet [21]. In prior research, researchers used two methods in crop disease recognition using CNN models 
[22]. Some use transfer learning to fine-tune well-known designs. Others use well-known architectures, such as 
modifying the convolutional layers, changing the order of layers, adding attention layers before the classifier layer, and 
ensembling more than two pre-trained CNN models. They aim to improve the model performance.   

The most considered dataset is the Plant Village dataset. In this dataset, [23] corresponded with the results of 
AlexNet and GoogLeNet, in detecting 26 crop diseases in laboratory leave images. They employed transfer learning to 
increase categorization performance and achieve an accuracy of 99.35%. CaffeNet was proposed by [24] on 15 class 
leaf images and achieved an accuracy of 96.0%. Cucumber leaves were considered by [25]–[27] using Deep 
Convolution Neural Network (Scratch designs), modified Deep Convolution Neural Network, and combined 
DeepLabV3+ and U-Net, respectively. Moreover, the detection of citrus diseases conducted by [22], [28], [29] used 
modified MobileNetV2 and an Ensemble AlexNet, VGG16, ResNet50, and InceptionResNetV2. Both cucumber and 
citrus crops achieved an accuracy of over 98%.   

In addition to the entire categories of the Plant Village dataset, researchers considered multiclass classification 
with 38 classes proposed by [30]–[34]. Pre-trained MobileNet, EfficientNet, DensNet, and ensemble MobileNet with 
DenseNets were applied. All suggested model performances achieved an accuracy of over 92%, and 100% for the 
ensemble model was proposed by [34]. 
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Other datasets such as iBean, Citrus, Rice, and Turk-Plants were also used to detect crop diseases. Several pre-
trained models were used, such as modified and ensembled by researchers, such as [35]–[40]. The model's average 
performance is above 99%. 

However, various datasets have been used in the literature, making it difficult to compare directly. Several 
detection systems work only on two classes, while the others detect crop diseases in over 38 classes. Considering this 
term, we suggested investigating the classification of crop disease by using ten pre-trained CNN algorithms to consider 
the entire Plant Village dataset. This dataset consists of 54.305 RGB leaf images with 256 x 256 pixels. The dataset 
subsists of 38 classes from 14 crop species: strawberries, apples, grapes, cherries, corn, oranges, blueberries, 
potatoes, soybeans, pumpkins, peppers, raspberries, peaches, and tomatoes. 

Another problematic aspect of comparing which CNN models can perform better is the various configurations 
and modifications of the pre-trained CNN models to detect crop disease. As a simple investigation to compare, we 
proposed regular and unfroze the final convolutional blocks aforementioned pre-trained CNN models. It aims to 
generate high-dimensional extracted features to provide a more helpful characteristic of an object. Our main 
contributions to this research are: 
1. Comparing the performance of 10 pre-trained CNN models to detect crop disease. 

2. Improving the performance of 10 pre-trained CNN models by unfroze the final convolution blocks. 
This research is organized as follows: Section 1 introduces crop diseases, state-of-the-art methods for classifying 

crop diseases, explains the problem of statements, and gives solutions as a contribution to the research. Section 2 
discusses research methods. Section 3 presents the experimental results and performance comparison. Eventually, 
Section 4 explains the conclusion of this study. 

 
2. Research Method 
2.1 Method  

This study considered 10 pre-trained CNN architectures, such as AlexNet, GoogleNet, VGG16, VGG19, 
ResNet50V2, InceptionV3, Xception, MobileNetV2, DenseNet121, and InceptionResnetV2 to classify crop diseases. 
These CNN architectures were developed with a transfer learning approach and implemented fine-tuning by unfreezing 
the last block of convolutional layers. It aims to enhance the high-dimensional extracted features. Updating the weight 
parameter impacts capture more details of high-dimensional extracted features. Figure 1 illustrates our research 
method, and Figure 2 describes our suggested transfer learning and fine-tuning design.  
 

 
Figure 1. Our Research Method 

 

 
Figure 2. Our Proposed Transfer Learning and Fine-Tuning CNNs Design 

 
2.2 Dataset 

Plant Village dataset consists of 38 classes and includes 54,305 images with 256 x 256 size in the RGB channel. 
The dataset consists of 14 plant species: apples, blueberries, cherries, corn, grapes, oranges, peppers, raspberries, 
potatoes, pumpkins, peaches, raspberries, soybeans, strawberries, and tomatoes. The diseases from the 14 plant 
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species are distributed as 17 fungal diseases, 4 bacterial diseases, 2 fungal diseases, 2 viral diseases, and the last 
disease caused by mites has 1 class. Meanwhile, there are 12 plant species in the healthy category of plant leaves [23]. 
The considered dataset was collected from https://www.kaggle.com/abdallahalidev/plantvillage-dataset. The example 
of each class image is shown in Figure 3.  

We pre-processed the collected dataset in four steps. The first step is resizing all images into 224 x 224 pixels. 
The second step is to split and distribute the dataset into a training set, a validation set, and a test set with a composition 
of 70%, 10%, and 20%, respectively. The detail of distribution is described in Figure 3. The third step is enforced image 
normalization, dividing the intensity value of each pixel by 255. The reason is to reduce computational costs because 
the intensity value of each pixel is between 0 and 1 [41]. 

Furthermore, the last step is image augmentation, completing the image in the data series more varied since the 
acquired image is subject to different conditions (angle, illumination, and background). Image augmentation is only 
performed on the training data because this model can accept different conditions of the leaf image under test. This 
step's configuration includes image rotation with a rotation angle of 30 degrees, zooming image with a percentage of 
0.3, cropping with width_shift_range, height_shift_range, shear_range, and zoom_range settings with values of 0.3. 
The last configuration is horizontal_flip with the setting True. 
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Figure 3. Randomly image examples: Apples (a1) Healthy, (a2) Scap, (a3) Balck rot, (a4) Cedar rust; Blueberry (b1) 
Healthy; Cherry (ce1) Healthy, (ce2) Powdery mildew; Corn, (co1) Healthy, (co2) Cercospora, (co3) Rust, (co4) 

Northern blight; Grape (g1) Healthy, (g2) Blak rot, (g3) Black measles; Orange (o1) Healthy; Peach (p1) Healthy, (p2) 
Bacterial spot; Pepper (pp1) Healthy, (pp2) Bacterial spot; Potato (po1) Healthy, (po2) Early blight; Raspberry (r1) 
Healthy; Soybean (s1) Healthy; Squash (sq1) Powdery mildew; Strawberry (st1) Scorch; Tomato (t1) Healthy, (t2) 
Bacterial spot, (t3) Early blight, (t4) Late blight, (t5) Mold, (t6) Septoria spot, (t7) Spider mites, (t8) Target spot, (t9) 

Mosaic virus, (t10) Yellow curl virus 
 
2.3 Software Tools for Experimental 

Our experimental research was conducted on the Google Colab Pro with the following specifications: Intel(R) 
Xeon(R) 2 CPU @ 2.20GHz Processor, 13GB RAM, and GPU Tesla P100-PCIE-16GB. This platform runs Python and 
Jupyter notebooks with Tensorflow and Keras libraries as a backend for VGG16, VGG19, ResNet50, InceptionV3, 
Xception, MobileNetV2, and InceptionResnetV2 models. Moreover, we used the PyTorch framework to train and test 
pre-trained AlexNet and GoogleNet models. 

 
2.4 Test Scenarios 

In this research, we considered two test scenarios. We initially considered regular transfer learning for ten pre-
trained CNN architectures without fine-tuning. Then, transfer learning and fine-tuning as a second scenario. We were 
unfreezing the final convolutional block layers to enhance the high-dimensional extracted features. 

This research considers Accuracy (Acc), Sensitivity (Sen), Specificity (Spe), and Precision (Prec) metrics to 
calculate the performance of tested CNN models. The correctly classified positive ratio of all True Positives is 
distinguished as Sensitivity. The correctly classified negative ratio of all False Positives is marked as Specificity. Then, 
Accuracy directs to the ratio of correctly classified samples to all samples. Precision guides to the correctly classified 
positive ratio of all accurate recognitions. 
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3. Results and Discussion 
Determining the hyperparameters for model training is critical work. We accept Adam as the optimizer, including 

a learning rate of 0.0001 as the best value. We initially tried different learning rate values starting from 0.1 to 0.0001 in 
0.1 additions. We also tested other optimizers, such as SGD and RMSprop. Therefore, Adam optimizer produces 
excellent training, validation, and testing performances. Another parameter is an epoch, which we set at 100 and 
consider to have an early stop value of 10. Training can be more efficient, and the process does not waste time in 100 
epochs. We also employed cross-entropy to track each epoch's decreasing error rate and accuracy. Finally, a batch 
size of 25, 18, and 18 for training, validation, and testing data were presented in Table 1. 
 

Table 1. Dataset Split Distribution (70:10:20) of Training, Validation, and Testing 

Crop Species Total Train Val Test Crop Species Total Train Val Test 

Apple Scab 630 441 63 126 Pepper Healthy 1478 1035 148 295 

Apple Black root 621 435 62 124 Potato Ealy Blight 1000 700 100 200 

Apple Cedar 
apple rust 

275 192 28 55 Potato Late Blight 1000 700 100 200 

Apple Healthy 1645 1151 165 329 Potato Healthy 152 106 15 31 

Blueberry 
Healthy 

1502 1051 150 301 Raspberry 371 260 37 74 

Cherry Powdery 
mildew 

1052 736 105 211 Soybean 5090 3563 509 1018 

Cherry Healthy 854 598 85 171 Squash Powdery Mildew 1835 1285 183 367 

Corn Cercospora 513 359 51 103 Strawberry scorch 1109 776 111 222 

Corn rust 1192 834 119 239 Strawberry Healthy 456 319 46 91 

Corn Northern 
Blight 

985 690 98 197 Tomato Bacterial spot 2127 1489 213 425 

Corn Healthy 1162 813 116 233 Tomato Early Blight 1000 700 100 200 

Grape Black rot 1180 826 118 236 Tomato Late Blight 1909 1336 191 382 

Grape Esca 
Black Measles 

1383 968 138 277 Tomato Leaf Mold 952 666 95 191 

Grape Blight 1076 753 108 215 Tomato Septoria spot 1771 1240 177 354 

Grape Healthy 423 296 42 85 Tomato Spider mites 1676 1173 168 335 

Orange 
Haunglongbing 

5507 3855 551 110
1 

Tomato Target Spot 1404 983 140 281 

Peach Bacterial 
spot 

2297 1608 230 459 Tomato Yellow curs virus 5357 3750 536 1071 

Peach Healthy 360 252 36 72 Tomato mosaic virus 373 261 37 75 

Pepper Bacterial 
Spot 

997 698 100 199 Tomato Healthy 1591 1114 159 318 

     Total 54305 38012 5430 10863 

 
3.1 Experimental Results Scenario 1  

The CNN model weight parameters were unchanged in this scenario because layers were configured as trainable 
equal false. We added one layer before the classifier layer, GlobalAveragePooling2D. It aims to provide features in one 
channel, as the classifier layer needs. The experimental results show that GoogleNet, DenseNet121, ResNet50, and 
MobileNetV2 achieved better accuracy than the seven pre-trained CNN models. It is similar to previous studies done 
by [23], [38], [42], and [29], respectively, that model performances were outperformed.  

On the other hand, the less time-consuming was provided by the AlexNet model. Moreover, MobileNetV2, both 
model performance and time-consuming outperformed. Table 2 presents the model performances in the first scenario 
design. 
 

Table 2. Model Performance for the First Scenario 

No Model 
Acc Prec Rec F1 

Computation Time 
Epoch 
Stop Train Val Test Test data 

1 AlexNet 95.63 89.47 89.47 91.42 89.47 89.54 3:10:55.722126 26 

2 GoogleNet 95.53 96.32 96.22 96.55 96.22 96.23 10:07:40.969602 22 

3 VGG16 81.04 86.00 84.18 84.91 84.18 83.95 8:27:10.904154 85 

4 VGG19 78.42 84.33 81.80 81.81 81.80 81.25 12:49:57.617564 97 

5 InceptionV3 88.39 89.28 88.14 88.51 88.14 87.96 4:36:43.910856 37 

6 ResNet50V2 92.67 94.62 93.26 93.56 93.26 93.21 4:07:58.418349 33 

7 InceptionResnetV2 89.32 91.58 90.64 90.85 90.64 90.46 5:51:53.510285 39 
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8 DenseNet121 93.40 94.99 94.48 94.62 94.48 94.45 4:55:42.577147 39 

9 MobileNetV2 93.08 93.17 93.11 93.35 93.11 93.11 4:03:49.903792 44 

10 Xception 91.81 92.30 84.57 86.45 84.57 84.65 7:44:02.629347 47 

 
3.2 Experimental Results Scenario 2 

As mentioned in the previous subsection, this scenario considered unfreezing the last convolution blocks of the 
CNN models. The model performances significantly improved. Each architecture achieved accuracy above 97%. 
Moreover, the time-consuming of each model decreasing about 50%. Table 3 describes the model performances of the 
second scenario design. 
 

Table 3. Model Performance for the Second Scenario  

No Model 
Acc Prec Rec F1 

Computation Time 
Epoch 
Stop Train Val Test Test data 

1 AlexNet 99.29 98.78 98.12 98.30 98.25 98.25 1:29:02.212469 31 

2 GoogleNet 99.28 99.02 98.34 98.34 98.42 98.42 1:32:59.543974 27 

3 VGG16 98.11 98.51 98.27 98.28 98.27 98.26 2:15:17.964204 16 

4 VGG19 96.64 97.29 97.19 97.31 97.19 97.19 4:13:36.753806 27 

5 InceptionV3 97.73 98.38 97.30 97.47 97.30 97.31 2:01:08.610317 21 

6 ResNet50V2 98.22 98.91 98.43 98.45 98.43 98.43 2:19:37.840994 18 

7 InceptionResnetV2 98.70 99.04 98.76 98.78 98.76 98.75 3:13:28.997381 22 

8 DenseNet121 99.13 99.15 98.97 99.00 98.97 98.97 3:38:19.336488 27 

9 MobileNetV2 98.74 99.10 98.95 98.96 98.95 98.94 2:07:51.701822 22 

10 Xception 99.53 99.45 97.58 97.68 97.58 97.58 6:12:13.524522 25 

 
 
3.3 Research Analysis and Limitations 

Implementing fine-tuning by unfreezing the last convolution block layers significantly affects the system's 
performance. As shown in Table 4, the accuracy value for each CNN model has improved with 4.49, 15.39, and 8.85 
values of lower, higher, and average, respectively. The model can perform better when the weights of high-dimensional 
features are updated. 
 

Table 4. Model Performances Comparison 

No Models 
Test Accuracy % Computational Time 

Scenario 1 Scenario 2 Improve Scenario 1 Scenario 2 Gap (hour) 

1 AlexNet 89.18 98.12 8.94 01:03:50 01:29:02 0.00 

2 GoogleNet 94.00 98.34 4.34 02:02:11 01:33:00 0.00 

3 VGG16 84.18 98.27 14.09 08:27:11 02:15:18 6.00 

4 VGG19 81.80 97.19 15.39 12:49:58 04:13:37 8.00 

5 InceptionV3 88.14 97.30 9.16 04:36:44 02:01:09 2.00 

6 ResNet50V2 93.26 98.43 5.17 04:07:58 02:19:38 1.00 

7 InceptionResnetV2 90.64 98.76 8.12 05:51:54 03:13:29 2.00 

8 DenseNet121 94.48 98.97 4.49 04:55:43 03:38:19 1.00 

9 MobileNetV2 93.11 98.95 5.84 04:03:50 02:07:52 1.00 

10 Xception 84.57 97.58 13.01 07:44:03 06:12:14 1.00 

 Average 89.34 98.19 8.85 - - 2.20 

 
The highest accuracy obtained by the DenseNet121 model of 98.97% is quite promising for crop disease 

detection. It will significantly assist farmers or agricultural experts in detecting crop diseases. 
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Figure 4. Training Accuracy and Loss Curve of the Second Scenario Design 
 

In addition to improving accuracy, unfreezing the final block of the convolution layer speeds up the training 
process. The average reduction in time consumption in each model is almost 50%, or 2.20 hours, with the most 
significant reduction being 8 hours. 

However, our research did not ultimately outperform the earlier research models. We accomplished just simple 
fine-tuning by unfreezing the final convolution block layers. For example, the CNN AlexNet and GoogleNet models 
proposed by [23] get an accuracy value of 99.35%, while our proposed model is only 98.34%. If we refer to the model 
performance graph in Figure 4, our proposed model is overfitting, and the VGG19 model followed this condition. While 
the DenseNet121 model, which is our best model, does not outperform the model proposed by [31]. Our DenseNet121 
model only gets 98.97% accuracy and 99.75% for [31] model. 

On the other hand, our model outperforms the model proposed by [43], which was only implemented on citrus 
crops. Their models get 97%, 96.2%, and 97% accuracy with the VGG16, VGG19, and InceptionV3 models. Meanwhile, 
our proposed model achieved an accuracy of 98.27%, 97.19%, and 97.30%. This positive result also outperforms the 

 

https://creativecommons.org/licenses/by-sa/4.0/


Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control 
 
 

Cite: D. Sutaji and H. Rosyid, “Convolutional Neural Network (CNN) Models for Crop Diseases Classification”, KINETIK, vol. 7, no. 2, May. 
2022. https://doi.org/10.22219/kinetik.v7i2.1443 
 
 
 

  

  
  

193 

Table 5. Performance Comparison with Prior Studies 

Authors Datasets Model Proposed Accuracy 

Mohanty [23] Entire Plant Village AlexNet, GoogleNet 99.35% 

Sladojevic [24] 
15 class custom leaf 

images 
CaffeNet 96.30% 

Gandhi [30] Entire Plant Village MobileNetV1 and GAN 92% 

Ma [25] 
Cucumber Plant 

Village 
Deep Convolution Neural 

Network (Scratch) 
93.40% 

Too [31] Entire Plant Village DenseNets 99.75% 

Geetharamani [32] Entire Plant Village 
Deep Convolution Neural 

Network (Scratch) 
96.46% 

Barman [29] 
Citrus 

 
Modified MobileNetV2 

SSCNN 
92% MobileNetV2, 99% 

SSCNN 

Atila [44] Entire Plant Village 
EfficientNet 
(B0 – B7) 

99.91% on B5, 
99.97% on B4. 

I. Ahmad [35] 
Custom Tomato Leaf 

(lab & field) 
Inception V3 

99.60% on lab data 
93.70% on field data 

Chen [36] 

Apple, Grape, Potato 
(Plant Village), 

Custom Maize and 
Rice 

MobileNet-Beta 
99.94% on plant village 

99.85% on custom 

Chen [37] 
Plant Village Maize, 

Custom rice and 
maize 

INC-VGG 
92% on plant village 

80.38% custom 

Tiwari [45] 

User-defined (3 
specieses of Plant 

village), iBean , 
Citrus, and Rice 

DenseNet with 5-fold Cross-
Validation 

99.19% 

Gajjar [39] 

Custom Plant Village 
(Apple, Corn Potato, 

Tomato) and field 
dataset 

CNN adoption from 
Inception Design (Scratch) 

96.88% 

Sujatha [43] Private Citrus leaf 
VGG16, VGG19, Inception 

V3 
97%, 96.2%, 97% 

Chen [40] 
Custom Plant Village 

and local dataset 
Modified MobileNetV2 + Soft 

Attention 
99.71% on Plant Village 

99.13% on local 

Khanramaki [22] Private Citrus leaf 
Ensemble AlexNet, VGG16, 

ResNet50, and 
InceptionResNetV2 

99.04% on augmented 
98.64% 

Wang [27] Cucumber leaf DeeplabV3+MobileNet 92.85% 

Turkoglu [1] 
Turk-Plants 

 

Ensemble six CNN models 
(feature extractor) and SVM 

(classifier). 

97.56% MV Model, 
96,83% EF 

Vallabhajosyula [34] Entire Plant Village 

Ensemble weighted 
MobileNet (0.3451), 

Densenet121 (0.6541), 
DenseNet201 (0.0009) 

100% 

Our Proposed Entire Plant Village 
DenseNet121 (scenario 2) 
MobileNetV2 (scenario 2) 

98.97% 
98.95% 

 
Model proposed by [37], which obtained an accuracy of 92% on rice plants. Likewise, the InceptionResNetV2 

model we propose has an accuracy of 98.76%, higher than the model proposed by [22] of 98.64%. This positive result 
is followed by the Xception model we propose to get almost the same results as the Xception model proposed by [46], 
which are 97.58% and 97.60%, respectively. Unfortunately, our MobileNetV2 model did not follow these positive results. 
Our MobileNetV2 model is inferior to some of the previously proposed models, which applied modification to an 
ensemble of MobileNet proposed by [29], [30], [36] and obtains more than 99% accuracy. Their models extract features 
better than our model. Moreover, their models added several convolutional layers before the classification layer. Our 

https://doi.org/10.22219/kinetik.v7i2.1443
https://doi.org/10.22219/kinetik.v7i2.1443


Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control 
 

© 2022 The Authors. Published by Universitas Muhammadiyah Malang 
This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/) 

 

 

                    

 

194 

MobileNetV2 model provides 98.95% of accuracy in the second scenario. Table 5 describes the performance 
comparison of our model with earlier studies. 

In completing the discussion of this section, the fine-tuning model that we propose is relatively simple compared 
to the model proposed by previous studies. Some of them applied architectural modifications, ensembles, and other 
advance works. Fortunately, our model is not entirely inferior to the previously proposed model. Some models like 
VGG16, VGG19, InceptionV3, and InceptionResNetV2 outperform models by [43]. The best models we 
proposeDenseNet121 and MobileNetV2, promise to be improved in terms of accuracy and time consumption. Moreover, 
MobileNetV2 has fewer parameters than DenseNet121, which means more affordable to embed in the mobile device 
for live detection.  

Although the proposed models in this article have achieved good results for the entire Plant Village dataset, there 
are several works to improve the performance: 
1. Adding several convolution layers before the classifier layer.  
2. Model modifications by unfreezing the initial convolution layers to update low-dimensional weight or ensembling 

models. 
  

4. Conclusion 
Fine-tuning by unfreezing the final convolution layer blocks can significantly improve the performance of pre-

trained 10 CNN models. From the results of our experiments, the best performance was obtained by DenseNet121 and 
MobileNetV2 models of 98.97% and 98.95%, respectively. This result increases the average performance of CNN 
models by 8.85%. Meanwhile, there was a drastic decrease of 50% for each model in time consumption, or 2.20 hours 
on average. Further research can be developed with architectural modifications by adding several convolution layers 
before the classifier layer, unfreezing the initial convolution layers to update low-dimensional weight, and ensembling 
models. 
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