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The Incremental Rotary Encoder has been widely used to measure the angular 
speed of electrical drives such as Permanent Magnet Direct Current Motor 
(PMDCM). Nevertheless, speed measurement of PMDCM from the encoder 
signals can be subject to errors in some special conditions, such as in a low-
resolution encoder. There are two main methods to measure the angular speed 
of PMDCM through encoder signal, such as frequency-based and period-
based, which has their properties. Hence, this research aimed to improve the 
angular speed measurement with frequency and period-based measurement 
hybridization. The Hybrid Method is defined as paralleling the period and 
frequency and then estimating the angular speed using sensor fusion with 
Kalman Filter. The experiment is done by comparing all Methods to get the 
best way to measure. The experiment showed that the Kalman filter parameter 
was fine-tuned resulting from the sensor fusion or the mixed measurement 
between the frequency-based and the period-based measure of the angular 
speed accurately. 

 
1. Introduction 

Permanent magnet DC motors (PMDCM) has been used in many application such as automotive, computer 
zapplication, robotic [1][2][3][[4], and industrial application [5][6][7][8][6][9]. Its advantages over other conventional 
motors are better speed and torque characteristics, better dynamic response, high efficiency, no need for excitation 
current, no noise operation, high weight to torque ratio, and relatively low cost [10]. The main problem in PMDCM is to 
measure and control the speed; here, improvements in speed control are much needed. Hence, most research 
discusses the PMDCM speed control and measurement. 

Incremental encoders are widely used in PMDCM for commercial drive because their cost is meager due to their 
precise position and speed measurement[11][12]. Speed error measurement results from encoder imperfections or the 
mistaken use of the calculation from the signal output. The defective encoder is usually caused by manufacturing 
tolerance and can’t be avoided or caused by imperfect installation. Speed is generally calculated from the encoder 
output signal as the ratio of angular rotation over time. There are two kinds of quantities keeping constant in speed 
measuring, period measurement or Fixed Space (FS) and frequency measurement, also called fixed time (FT), which 
has its own characteristic.  

Obtaining speed is a task with many independent variable factors affecting the range of states and can result in 
significant errors if not appropriately executed [13]. In low price encoder mostly have low pulse per revolution (PPR), 
such as magnetic encoder, which has five to 7 PPR. According to [13], for an encoder with low PPR, the period 
measurement method speed error will be increased during the increase of motor speed. In contrast, for the frequency-
based measurement, the most significant error will occur at the lowest motor speed. Many different methods are 
proposed to increase the accuracy and precision of speed measurement. The simple way is to implement a sort of like 
filter such as the conventional low past filter [12][14]. The drawback of using the traditional filter is the depletion of 
dynamic response due to the measurement delay caused by the derivative in the filter operation. 

Other ways with the state estimation are proposed by using Kalman Filter to estimate the angular speed [15]–
[22]. The estimation is used with another state in the PMDCM model, such as the current and the input voltage. Such 
that results from the sensorless measurement. However, the drawback of state estimation using the mathematical 
model is the accuracy of the system identification to create the model. A high-speed error can occur if the parameter of 
the model is not correctly tuned. Hence this paper proposed another approach to enhance the precision and accuracy 
of the PMDCM speed measurement using the hybridization of frequency and period based on the Kalman Filter sensor 
fusion method. 
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2. Research Method 
The first step to improve the accuracy of speed measurement is to observe the encoder speed measurement 

methods where there are two methods to measure the PMDCM using the encoder, such as period measurement or fix 
space (FS) and frequency measurement or fix time (FT) with its own characteristic. Hence this research proposed two 
different methods based on both Methods. 

 
2.1 Rotary Encoder Period and Frequency-based Speed Measurement 

The Simplest Method to measure the PMDCM rotor speed is using a frequency base [23]. The frequency-based 
measurement method measures the frequency or pulse number of the encoder in a fixed period of time. This frequency 
pulse is proportional to the PMDCM rotor angular speed. 

 

 
Figure 1. Frequency Base Measurement[13] 

 
The frequency number is measured by counting the number of encoder pulses (∆𝑁) in a fixed gate time (𝑇𝑠), 

which illustrated in Figure 1 with the angular speed (𝜔) is given in Equation 1. 
 

𝜔𝑓 =
2𝜋∆𝑁

𝑁𝑝𝑇𝑠

 (1) 

 
Where 𝑁𝑝 is the number of pulses per rotation (PPR) of the encoder shaft. The measuring error of frequency-

based is described in Equation 2 below: 
 

𝑒𝑤 =
2𝜋

𝜔𝑁𝑝𝑇𝑠

[%] (2) 

 
From the error equation, the error measurement will be unacceptable at low speed and decrease inversely with 

speed. 

The period-base measures the period of the encoder pulses using a time-based signal with a period 𝑇ℎ𝑓. It is 

necessary to measure the changing of pulse between low and high signals to count the time-based signal using a digital 
timer counter [24] which illustrated in Figure 2, 

 

 
Figure 2. Period-based Measurement[13] 

 

The angular speed of period-based measurement is given in Equation 3. 
 

𝜔𝑝 =
2𝜋

𝑁𝑝𝑛𝑇ℎ𝑓

 (3) 

 
Where 𝑛 is the number of pulses of the time-based signal. The measuring error of period-based measurement is 

described in Equation 4 below. 
 

𝑒𝜔 =
𝜔𝑁𝑝𝑇ℎ𝑓

2𝜋
[%] (4) 
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Where 𝜔 is the angular speed in rad/s, 𝑁𝑝 is the amount of pulse per rotation of the encoder, 𝑇𝑠 is the sampling 

period for the frequency base method, and 𝑇ℎ𝑓 is the max period or the high frequency generated for the period-based 

measurement; from this equation, the measuring error is proportionally increased due to the speed increasing. 
Most electrical drive in an industrial application has a feature with a nominal speed of up to 7000 rpm and an 

encoder with up to 1024 ppr (pulse per rotation). According to [13], if the period-based and frequency-based are 
compared, the period-based speed error will be increased along with speed, but the frequency-based is exponentially 
decreased during the increase of motor speed, as can be seen in Figure 3. Hence this research proposed the hybrid 
method of measuring the motor speed using period-based and frequency-based.  

 

 
Figure 3. Frequency and Period Base Speed Measurement Comparison 

 

The hybrid method is defined as the switch method between period and frequency-based. Based on the 
characteristic that showed in Figure 3 the period-based measurement will run first after, in a number speed, the 
algorithm will be changed to a frequency-based Method. In this research, the speed limit to change between the period 
base and frequency-based is experimentally chosen. 

 
2.2 Mixed-Method between period and frequency-based 

The mixed-method is defined with both method, period, and frequency-based will be running separately and 
continuously. The measurement value will be approximated using the Kalman filter, which will combine the 
measurement value between both Methods. The diagram of the mixed method is shown in Figure 4. 

 

 
Figure 4. Mixed Method Diagram 

 

The Kalman filter process is defined into three steps, which are predicted, measured, and update. The whole 
process of the Kalman filter is described in this step: 
Predict: 

In predict step Equation 5, the physical system that will be measured is defined with ω as the state variable in 
which the angular speed of PMD that measured using the frequency-based method described in (1). 

 

ω =
2𝜋∆𝑁

𝑁𝑝𝑇𝑠

 

𝑃 =   𝑃 ∗  𝑇 ∗  𝑄 

(5) 

 
Measurement: 

In the measurement step, the new value of the measured variable is obtained with denoted as 𝜔𝑝. Then, it will 

be compared with the state estimation, which results from the predicted step that results in error estimation, in Equation 
6 which is denoted as Y. 
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Y =  ωp —  H ∗  ω (6) 

 
After estimating the error measurement, the Kalman parameter is updated using the Equation 7 below. 
 

𝐾 =
𝑃 ∗  𝐻𝑇

( 𝐻 ∗  𝑃 ∗  𝐻𝑇 ) +  𝑅
 (7) 

 
Update, 

Finally, in Equation 8 the speed measurement is obtained by updating the state using error estimation and the 
Kalman parameter. 

 

ω =  ω +  𝐾 ∗  𝑌 
𝑃 =  ( 𝐼 —  𝐾 ∗  𝐻 )  ∗  𝑃 

(8) 

 
Where 𝐻 is the identity matrix that is given according to the number of state variables and 𝑄 is the measurement 

bias. 
 

3. Results and Discussion 
3.1 Frequency-Based vs. Period-Based Measurement 

This research is done by experimenting with both methods in a 32-bit microcontroller with a DC motor and a 
magnetic encoder attached. The PG45 DC motor had a max angular speed of 9600 rpm or 1005 rad/S in 24 Volt. The 
PG45 DC motor is attached with a seven pulse per rotation (PPR) magnetic encoder. This experiment runs with a 
maximum of 12 volts with the angular speed reaching 450 rad/s to test the method.   

As mentioned in [25], the error measurement estimation of frequency-based and period-based can be calculated 

by comparing the 
∆𝜔

𝜔
 which showed in (2) and (4). The first experiment tested the error measurement between both 

methods. Using the PG45 properties with seven ppr of the encoder and the maximum voltage is 12 volt, the error 
measurement comparison between the frequency-based and period-based showed in Figure 5. 

 

 
Figure 5. Error Measurement Comparison between Frequency-Based and Period-Based Method  

 

As depicted in Figure 5, the error measurement of the frequency-based measurement method is exponentially 
decreased as the angular speed is increased. In opposite, the error measurement of the period-based measurement 
method is linearly increased. The period-based method did the measurement of the angular speed accurately when the 
angular speed was under 40 rad/s, and the frequency-based was the opposite. It proofed in Figure 6 and Figure 7, the 
frequency-based method had the error measurement from 5 rad/s to 10 rad/s when the angular speed is under 40 rad/s. 
The period-based measurement had a two rad/s error difference when the angular speed was under 30 rad/s and 
increased until five rad/s when the angular speed reached 40 rad/s.    
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Figure 6. Angular Speed Comparison between Frequency and Period-Based Measurement Method from 9 – 45 rad/s 
 

 
Figure 7. Angular Speed Comparison between Frequency and Period-Based Measurement Method from 45 – 121 

rad/s 
 

Figure 7 showed that the period-based measurement oscillated with an amplitude of 20 rad/s when the angular 
speed was upper than 50 rad/s, and the oscillation was increased until 50 rad/s when the angular speed was over 100 
rad/s. The worst is resulting in the angular speed being over 200 rad/s the period-based measurement that the oscillation 
saturated from 220 rad/s to 440 rad/s so that can not measure and following the increased of the angular speed such 
as the frequency-based that showed in Figure 8. The frequency-based was accurately measured the angular speed 
with five rad/s error constantly even though the angular speed is increased until it reaches the maximum.  

 

 
 Figure 8. Angular Speed Comparison between Frequency and Period-Based Measurement Method from 215 – 415 

rad/s 
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3.2 Mixed Using Kalman Filter 
In Kalman Filter, there was the input of the model to predict the output measurement and compare it using the 

actual measurement. In this research, the input of the predicting model is using the result of the period-based 
measurement method and comparing it using the frequency-based method. The first test was compared three methods 
with angular speeds from 100 rad/s to 200 rad/s. In this test, the parameter of the Kalman Filter was chosen randomly, 

i.e., 𝑄 = [
0.0001 0

0 0.0001
] and 𝑅 = 0.0001. The reason the 𝑅 parameter was chosen in small value was to reduce the 

measurement noise, and the 𝑄 parameter was chosen to control the biased from the difference between the period and 
frequency-based methods. The measurement result is depicted in Figure 9. 

 

 
Figure 9. The Comparison between Frequency-Based, Period-Based, and Mixed using Kalman Filter from 10 rad/s to 

40 rad/s 
Figure 9 shows the comparison between Frequency-based, Period-based, and Mixed using Kalman Filter from 

10 rad/s to 40 rad/s. It showed that the mixed method using Kalman Filter could reduce 10% amplitude of the oscillation 
from the frequency-based method, similarly to the period-based. However, there was a drawback from the mixed-
method that resulted in a 10% overshoot. It is still acceptable because it only happens in 2 seconds.  

 

 
Figure 10. The Comparison between Frequency-Based and Mixed using Kalman Filter from 50 rad/s to 250 rad/s 

 

Figure 10 depicted the comparison between Frequency-based and Mixed using Kalman Filter from 50 rad/s to 
250 rad/s. The overshoot of the mixed method using the Kalman filter was increased since the measured angular speed 
was increased too. The overshoot reached 25%, and the oscillation in the steady-state was increased by 5% to the low 
angular speed. From that experiment, the parameter of the Kalman Filter was tuned again, and the 𝑄 and 𝑅 parameters 
were increased ten times which can be shown in Table 1. 
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Table 1. Paraemeter Setting of Kalman Filter 

Parameter Value 1 Value 2 

𝑄 [
0.0001 0

0 0.0001
] [

0.001 0
0 0.001

] 

𝑅 0.00001 0.0001 

 
Figure 11 and Figure 12 showed the comparison between Frequency-based and Mixed using Kalman Filter from 

10 rad/s to 110 rad/s and 210 rad/s to 350 rad/s. It showed that the steady-state still oscillated but reduced by 1%, and 
the overshoot in low angular speed was reduced to 8.9%. At high angular speed, the overshoot is maintained from 8% 
to 9%, and the steady-state was still oscillated but not over than the frequency-based method, which has high accuracy 
when the angular speed is high. It can be shown in Figure 12. It shows that if the Kalman filter parameter was fine-
tuned, the sensor fusion or the mixed measurement between the frequency-based and the period-based could measure 
the angular speed accurately compared to the single frequency-based method. 

 

 
Figure 11. The comparison between Frequency-Based and Mixed using Kalman Filter from 10 rad/s to 110 rad/s with 

Parameter Setting 2 
 

 
Figure 12. The Comparison between Frequency-Based and Mixed using Kalman Filter from 210 rad/s to 350 rad/s 

with Parameter Setting 2 
 
4. Conclusion 

This research implemented the sensor fusion method between frequency-based and period-based measurement 
successfully. The proposed method can increase the measurement accuracy by reducing the error measurement and 
steady-state oscillation. Even though there was an overshoot in two seconds but still acceptable since the overshoot is 
under 10%.  
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The experiment showed that if the Kalman filter parameter was fine-tuned, the sensor fusion or the mixed 
measurement between the frequency-based and the period-based measure the angular speed accurately. However, it 
was done by processing both methods, which can increase the processing computation that can be investigated further. 
It also can be developed using a model-based Kalman filter, which only uses a single measurement method. 
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