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SARS-CoV-2 causes an infection called COVID-19, which is caused by a new 
coronavirus. One of the symptoms that are dangerous to the patients is 
developing pneumonia in their lungs. To detect pneumonia symptoms, one of 
the newest methods is using CNN (Convolution Neural Networks). The 
problem is when able to detect pneumonia, the patient’s survivability, which 
knowing this will be helpful to decide the priority for each patient, is still in 
question. The CNN used to classify the patient’s future condition in this 
research but met some major problems: the dataset is very few and 
unbalanced. The dataset for this research was taken from 
https://www.kaggle.com/bachrr/covid-chest-xray.  However, we are not using 
all the images from the dataset. Only the data have value in ‘survival’ columns, 
116 images in total, 94 of them will be used for the training dataset. The image 
augmentation was used to multiply the training data, resulted in 1429 images, 
and class weight was applied to prevent miscalculation on minority class. 6 
CNN architectures were used to find the best model. The result VGG19 
architecture has the best overall accuracy, in training, it has 80% accuracy, 89% 
accuracy invalidation, and 82% f1 score accuracy on classifying the testing 
dataset means the best model if looking for accuracy on prediction, but this 
cost a prediction time that longest compared to other CNN architectures. 
MobileNet is the fastest, but it cost much worse on prediction accuracy, only 
55%. The ResNet50 model has balanced prediction accuracy/time. It got 77% 
f1 accuracy and 8.49 seconds of prediction time, 9 seconds less than VGG19. 

 
1. Introduction 

Coronaviruses are a form of the virus that can cause infection and, as a result, sickness, ranging from the common 
cold to serious diseases such as Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome 
(MERS). SARS-CoV-2 causes an infection called COVID-19, which is caused by a new coronavirus. According to a 
World Health Organization (WHO) report, COVID-19 viruses, such as SARS, cause open holes in the lungs [1]. In 
December 2019, an outbreak of SARS-CoV-2 (formerly 2019-nCoV) infection was discovered in Wuhan, Hubei 
Province, China [2][3]. The patients that suffered the disease that went into the Intensive Care Unit had pneumonia. 
High cytocines were recorded in the x-ray of the patient’s lung images, making  them have a lesser ‘black area’ [4].  

One of the newest methods for detecting pneumonia symptoms is using CNN (Convolution Neural Networks) to help 
extract features from the x-ray images. Then the extracted feature is used to classify the images. In the research 
involving 5000 images of chest X-Ray, CNN proved to gain high accuracy in classification tasks between normal images 
and pneumonia images, gained 74%-94% accuracy [5]. As the pandemic started, this method was applied to detect 
COVID-19 infection that caused pneumonia symptoms and classify the COVID-19 infected pneumonia cases with other 
pneumonia cases. The research using a merged dataset with 8474 datasets that only 445 of which are COVID-19 cases 
that caused an imbalanced dataset. With applying weight, the model can generate training accuracy up to 94% and 
classification accuracy of 95% with the vgg16 model [6]. Besides the VGG16 model, Residual Network also was used 
similar research to classify normal lungs with pneumonia lung to find the best model for the task [7].  

Based on those research, we want to improve the detection to a more advanced level, not only detecting those 
infected with COVID-19 or not but also supplying more information about the patients. In this research, we want to make 
a classification system that can predict the survivability condition of the patients so that the doctor could decide the 
priority for each patient. It is important because the death rate of those who developed pneumonia and were sent into 
the Intensive Care Unit is still high, around 23% in the US  [8].   

A dataset supplied the information about the final condition of the patients with pneumonia cases (mostly because 
of COVID-19) [9].  The metadata had survival columns that provide useful information to our research, but many of them 
were left blank. We use only the data that have value in ‘survival’ columns. The problem with the dataset is the amount 
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is so small, 116 images total that match our requirement to becoming dataset of this research, and when splitting into two 
classes for classification purposes, the dataset is also imbalanced, around 1:4. These problems will lead the CNN model 
into a massive over-fitting problem, reducing the training, validation, and testing accuracy.  

To prevent this, the image augmentation technique and adding a dropout layer could be the solutions. Research that 
classifies the face dataset using CNN, containing only 500 images, able to  gained a good accuracy of 58% with help 
from the augmentation technique by flipping the images [10]. More aggressive augmentation techniques are also 
applicable to improve training and classification for a much lesser dataset, for example, if the dataset was lower than 
100 [11]. Because the dataset used in this research is fewer than that and suffers from imbalance, class weight and 
augmentation with more parameters such as rotation will be applied when training the model to improve the performance 
further. We also use six different models, VGG16, VGG19, ResNet50, ResNet101, ResNet152, and MobileNet, to find 
the most suitable model with the best outcome.  

 
2. Research Method 
2.1 Proposed Method 

The proposed methods consist of five main parts such as illustrated in Figure 1. There are inputs in the form o 
an image dataset of a chest x-ray. The pre-processing stage consists of augmenting the image, so the dataset becomes 
larger in number. The CNN Training process is a process to train the CNN models, VGG16, VGG19, ResNet50, 
ResNet101, ResNet152, and MobileNet. CNN Testing is a process to classify the testing dataset using a trained CNN 
model. The final step is to display the output of model accuracy and the testing accuracy alongside their training and 
classification time in second.  
 

 
Figure 1. The Block System of Proposed Method 

 
2.2 Pre-Processing 

The data used 116 lung images that suffered pneumonia with various causes (mostly COVID-19). Every image 
has a parameter called survivability. The images are then split into two classes based on the value of the parameter. 
From each class, 20% of the images that belong to COVID-19 patients, 22 images are taken into the “testing images” 
directory, these images will be used to testing the process later that must be hidden from the training process, 94 images 
are taken into “training images” directory. 

All datasets that belong to the training directory are augmented before being used for the CNN training process. 
In supervised learning, dataset augmentation is the practice of applying a wide range of domain-specific transformations 
to synthetically expand a training set, already become standard practice [12]. In this research, we are using 
ImageDataGenerator API by Keras [13] to generate more images depending on what hyperparameters we are using. 
Those parameters could be viewed in Table 1. 

Table 1. Image Data Generator Parameter 

Variable Value 
Before 

Augmentation 
After 

Augmentation 

Horizontal Flip True 94 1429 

Brightness Range 0.15 … 1.5 94 1429 
Rotation Range 

Fill Mode 
0-20 degree 

Nearest 
94 
94 

1429 
1429 

 
Augmentation process creating multiple images based on the original image and the combination of Image Data 

Generator Parameter values. The sample of original images and the result of the augmentation process is shown in 
Figure 2, the leftmost images are the original image, and the augmented images are in the right of it. ImgeDataGenerator 
from Keras was used in this augmentation process. This API works by taking the original image as input, then generating 
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multiple images. The appearance of the augmented images depends on what parameter that used. In this research, we 
use the parameter in Table 1, and this process will be looped over by a certain number called a batch. In this research, 
we set the batch to 15, so the API will generating around 15 augmented images per one original image, the three 
examples of the augmented presented in Figure 2 right. A result is a growing number of the training dataset from 94 
images to 1429 images divided into two classes. Class 0, where the survivor lung images belong to has 1083 images, 
and Class 1, where the lung images belong to those who didn’t survive, has 346 images. 

 

     
Figure 2. Original Images of Lung Images and The Result of Augmentation Process 

 
Original Images vary in size and format, so resizing and reformatting are committed so we can simplify the system 

to receive input images of the same size and format. These images are reformatted into .jpg (Joint Photographic Group) 
because it is smaller in size than .png, which could save some memory usage used in the training process.  The 
resolution of the images will be resized into 100x100 pixels, applied to all images both on training or testing directory. 
The images are then loaded into NumPy arrays, the standard representation for numerical data, and the purpose is to 
enable efficient implementation of numerical computations in a high-level language [14]. 
 
2.3 Implementation of CNN 

CNN is a Deep Learning architecture based on the ability of humans to recognize objects and their surroundings 
quickly. If computers can recognize or classify objects and their surroundings using low-level features, they can use a 
series of convolutional layers to build a more abstract concept of what they know. As a result, Convolutional Neural 
Network is the name given to this network structure [15]. By using Deep Learning, we can eliminate building a feature 
extraction model because it can automatically manipulate features [16].  Each process consists of three layers, namely: 
convolution layer, activation function layer, and pooling layer [17]. CNN architecture comprises of a series of 
convolutional layers with activation functions and a continuation of the previous structure. The image is smaller, but it 
is more detailed. Following the convolutional and pooling layers, a feed-forward neural network with fully connected 
layers and an activation function is added, followed by a predictive layer with a softmax function that displays the 
estimated probability [18]. CNN architecture is displayed in Figure 3. 

 

 
Figure 3. Convolutional Neural Network Architecture 

 
Convolution is a mathematical operation on two functions (f and g) that results in a third function that expresses 

how the shape is changed by the other. Convolution, in other words, is a method of applying a filter to one function and 
obtaining the resulting function. The concept of convolution is widely used in a variety of computer science fields. Because 
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we’re dealing with images in computer vision, the original function is a 2D image, and the filter we want to apply is also 
2D. Convolution operation for a 2D image (H) and 2D filter (kernel) F could be viewed in Equation 1.  
 

𝐺[𝑖, 𝑗] = ∑  

𝑘

𝑢=−𝑘

∑  

𝑘

𝑢=−𝑘

𝐻[𝑢, 𝑣]𝐹[𝑖 − 𝑢, 𝑗 − 𝑣] (1) 

 
2.3.1 VGG Architecture 

In their paper, K. Simonyan and A. Zisserman from the University of Oxford proposed the VGG16 convolutional 
neural network model [19]. In ImageNet testing, a dataset of over 14 million images belonging to 1000 classes, the 
model achieves 92.7 percent, top-5 in test accuracy. It was one of the most well-known models submitted to the 2014 
ILSVRC. It outperforms AlexNet by sequentially replacing large kernel-size filters (11 and 5 in the first and second 
convolutional layers) with multiple three by three kernel-size filters. VGG16 had been trained for weeks on NVIDIA Titan 
Black GPUs. VGG16 has 16 layers and 138 million parameters. Meanwhile, VGG19 has 19 layers and 144 million 
parameters. The VGG16 and VGG19 architecture could be viewed in Figure 4 

 

 
Figure 4. VGG16 and VGG19 Architecture 

 
2.3.2 ResNet Architecture 

Residual Networks (ResNets) are deep convolutional networks in which the basic idea is to use shortcut 
connections to skip blocks of convolutional layers [20]. The two numbers (ResNetXX) means the number of layers. 
Therefore this ResNet50 using 50 layers and having over 23 million trainable parameters, ResNet101 using 101 layers 
and having over 44 million trainable parameters, and ResNet152 using 152 layers and having over 60 million trainable 
parameters. ResNet’s fundamental building block is a Residual block, which is repeated throughout the network. This 
residual block is illustrated in Figure 5. 

 

  
Figure 5. Residual Block on ResNets Architecture 
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2.3.3 MobileNet Architecture 
MobileNet uses Depthwise separable convolutions. Compared to a network with regular convolutions of the same 

depth in the nets, it significantly reduces the number of parameters. As a result, lightweight deep neural networks are 
created [21].  As shown in Figure 6, the main difference between MobileNet and traditional CNN architecture is that 
instead of a single 3x3 convolution layer (left), batch normalization and ReLU are used. Mobile Nets (right) split the 
convolution into a 3x3 depth-wise convolution and a 1x1 pointwise convolution. MobileNet at default settings has 4.2 
million parameters and could be reduced by tuning the width hyperparameter. 

 

 
Figure 6. MobileNet Architecture (Right) Compared to Traditional CNN (Left)  

 
2.3.4 Softmax Classifier 

The cross-entropy loss is used by the Softmax classifier [22]. The Softmax classifier gets its name from the 
softmax function, which squashes raw class scores into normalized positive values that sum to one to apply the cross-
entropy loss. The softmax activation formula could be viewed in Equation 2. 
 

𝑓(𝑥𝑖) =
exp(𝑥𝑖)

∑  𝑗 exp⁡(𝑥𝑗)
 (2) 

Where: 
f(xi) = the result of the softmax activation function 
Xi = class number i (i=1,2...) in this research we are using 2 class 
j = the value of the vector 

 
2.3.5 Class Weight 

One of the main problems with the dataset that we are using for this research is a class imbalance [23]. Class 0, 
where the survivor’s lungs belong to has a higher occurrence compared to class 1. It will greatly affect prediction tasks 
because most machine learning assumes that data between classes are evenly distributed. Sklearn libraries have 
‘class_weight’ [24][25]  that will be helpful to handle such a problem by manually assign each class weight value using 
the formula at Equation 3.  
 

𝑤𝑗=n_samples / (n_classes * n_samplesj) (3) 

 
Where: 
wj is the weight for each class (j signifies the class) 
n_samples is the total number of samples or rows in the dataset 
n_classes is the total number of unique classes in the target 
n_samplesj is the total number of rows of the respective class 
 
2.4 Hardware & System Configuration 

Every CNN run has to be done in the same device and software specification to get the result fairly. For this 
research, the setup, software, and hardware used for the experiment as displayed in Table 2. 

Table 2. Hardware & System Configuration 

Variable Specification 

Processor Core i7 4500U @ 1.80 GHz 

RAM 8 GB DDR3 
GPU 

Operating System 
Virtual Environment for Python Code 
Software Used for Training the CNN 

NVIDIA GT 750M 2 GB of VRAM 
Microsoft Windows 10 Pro 
Anaconda with Python 3 

Tensorflow GPU 1.15 
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3. Results and Discussion 
The first step is to train the CNN model using various architecture models. In this research, the training process 

will run 6 times in total to train the model using 6 different architectures, VGG16, VGG19, ResNet50, ResNet101, 
ResNet152, and MobileNet. The training process involves 1071 samples and validation on 358 samples and runs 15 
epochs for each model architecture with class weight value applied. This training process is a loss and accuracy graph 
on both the training and validation process. A loss curve is one of the most commonly used plots to debug a neural 
network [26]. It provides an overview of the training process as well as the network’s learning trajectory. The higher the 
loss, the model will be worse. An accuracy curve is another commonly used curve to understand the progress of Neural 
Networks, and the higher accuracy indicates a better model. The loss graph on training could be viewed in Figure 7, 
and the validation loss graph in Figure 9. The training accuracy graph could be viewed in Figure 8, and the validation 
accuracy in Figure 10. The training time is also provided in Figure 11 because it is also one of the performance 
parameters used to know which architecture has the best performance. 

 

 
Figure 7. Training Loss Graph on Each CNN Architecture 

 

 
Figure 8. Training Accuracy Graph on Each CNN Architecture 
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Figure 9. Validation Loss Graph on Each CNN Architecture 

  

 
Figure 10. Validation Accuracy Graph on Each CNN Architecture 

 

 
Figure 11. Training Time to Run 15 Epochs on Each CNN Architecture  
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The result in VGGNet (VGG16 and VGG19) has the best training accuracy (81% on VGG16, 80% on VGG19) 
and validation accuracy above 80% (88% on VGG16 at epoch 15, 89% on VGG19 at epoch 15) and also having 
considerable shorter training time compared to some model except MobileNet, but MobileNet much lower Accuracy and 
higher Loss compared to VGGNet. However, those VGGNet model has low validation loss but higher training loss (but 
also high training accuracy) compared to the other model. The normal condition is that if the model has high accuracy, 
then the loss must be lower. The loss tracks the prediction’s inverse confidence. A high Loss and high Accuracy score 
indicate that the model is less confident in its predictions, even when making correct ones.  

The next step is to run the model to predict the testing dataset. This dataset is hidden from the training process, 
containing 22 images, split into two classes. Class 0, called ‘survive’ containing 17 images, and class 1 called ‘not 
survived’ containing 5 images, the output is a classification report. The classification report displayed in Table 3, showing 
precision Equation 4, recall Equation 5, f1 value Equation 6, support (the number of images that belong to a class or 
whole dataset), Accuracy Equation 7, and this research also displayed classification time to measure performance. If 
we need to find a balance between Precision and Recall and there is an uneven class distribution, the F1 score might 
be a better measure to use [27].  
 

Precision =
 True Positive 

 True Positive +False Positive 
 (4) 

  

Recall =
 True Positive 

 True Positive  + False Negative 
 (5) 

  

𝐹1 = 2 ×
 Precision ∗  Recall 

 Precision +  Recall 
 (6) 

  

Accuracy =
𝐹1class 1 + 𝐹1class 2 +⋯+ 𝐹1classN 

 Number of Classes 
 (7) 

 
Because of the unbalanced dataset problem, we are also displayed macro average and weighted average. Macro 

average means calculates precision, recall, f1 by class but not including weights for aggregation. Weighted average 
means calculate precision, recall, f1 for each class, then adding weights value depending on the class [28]. An example 
of the macro calculation, the f1 macro calculation displayed on Equation 8. The example of the weighted calculation, 
the f1 weighted calculation, could be viewed at Equation 9. 
 

Macro⁡AVG = ⁡𝐹1class 1 + 𝐹1class 2 +⋯+ 𝐹1classN  (8) 
  

Weighted⁡AVG = ⁡𝐹1class 1 ∗ 𝑊1 + 𝐹1class 2 ∗ 𝑊2 +⋯+ 𝐹1classN ∗ 𝑊𝑁 (9) 
 

Table 3. The Result of Classification on Testing Dataset  

Model Architecture  Precision Recall F1 Support Time (s) 

VGG16 
 

0 (‘Survive’) 
1 (‘Not Survived’) 

Accuracy 
Macro AVG 

Weighted AVG 

0.90 
0.33 

 
0.62 
0.77 

0.53 
0.80 

 
0.66 
0.59 

0.67 
0.47 
0.59 
0.57 
0.62 

17 
5 

22 
22 
22 

17.52 

VGG19 

0 (‘Survive’) 
1 (‘Not Survived’) 

Accuracy 
Macro AVG 

Weighted AVG 

1.00 
0.56 

 
0.78 
0.90 

0.76 
1.00 

 
0.88 
0.82 

0.87 
0.71 
0.82 
0.79 
0.83 

17 
5 

22 
22 
22 

17.71 

ResNet50 

0 (‘Survive’) 
1 (‘Not Survived’) 

Accuracy 
Macro AVG 

Weighted AVG 

0.93 
0.50 

 
0.71 
0.83 

0.76 
0.80 

 
0.78 
0.77 

0.84 
0.62 
0.77 
0.73 
0.79 

17 
5 

22 
22 
22 

8.49 

ResNet101 
0 (‘Survive’) 

1 (‘Not Survived’) 
Accuracy 

0.83 
0.50 

 

0.88 
0.40 

 

0.86 
0.44 
0.77 

17 
5 

22 
11.2 
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Macro AVG 
Weighted AVG 

0.67 
0.76 

0.64 
0.77 

0.65 
0.76 

22 
22 

ResNet152 

0 (‘Survive’) 
1 (‘Not Survived’) 

Accuracy 
Macro AVG 

Weighted AVG 

0.80 
0.29 

 
0.54 
0.68 

0.71 
0.40 

 
0.55 
0.64 

0.75 
0.33 
0.64 
0.54 
0.66 

17 
5 

22 
22 
22 

13.85 

       

MobileNet 

0 (‘Survive’) 
1 (‘Not Survived’) 

Accuracy 
Macro AVG 

Weighted AVG 

1.00 
0.33 

 
0.67 
0.85 

0.41 
1.00 

 
0.71 
0.55 

0.58 
0.50 
0.55 
0.54 
0.56 

17 
5 

22 
22 
22 

5.34 

 
From the result displayed in Table 3, the best f1 score belongs to VGG19 architecture with the highest f1 

accuracy of 82%, which means the best model is looking for accuracy on prediction, but this costs a longer prediction 
time than other CNN architectures. MobileNet is the fastest, but it cost much worse on prediction accuracy, only 55%. 
The ResNet50 model has balanced prediction accuracy/time. It got 77%, not too bad accuracy, and 8.49 seconds of 
prediction time, 9 seconds less than VGG19. 

 
 
4. Conclusion 

This research is to classify the condition of COVID-19 patients that develop pneumonia symptoms based on their 
survivability using a Convolutional Neural Network. The problem encountered in this research is that the dataset is too 
few and unbalance. Image augmentation is used to multiply the original dataset containing 94 training images to 1429 
images divided into 346 and 1083 images each. Class Weight is applied in this research to address the class imbalance 
problem instead of making equal images on both classes using augmentation. The classification task used CNN with 6 
different architectures to find the best performance between them, and the result is VGG19 has the best overall 
accuracy. Training has 80% accuracy, 89% accuracy invalidation, and 82% f1 score accuracy on classifying the testing 
dataset. VGG19 has relatively less time-consuming training steps, but in the classification, using the testing dataset, it 
has the most time-consuming compared to all the other architecture. ResNet50 has balanced prediction accuracy and 
time, got 77% on classifying testing dataset, and is 9 seconds less time-consuming than VGG19. MobileNet, however, 
has the fastest training and testing time, but the accuracy is unreliable. 
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