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Software testing is a crucial process in software development life cycle which 
will affect the software quality. However, testing is a tedious task and resource 
consuming. Software testing can be conducted more efficiently by focusing this 
activitiy to software modules which is prone to defect. Therefore, an automated 
software defect prediction is needed. This research implemented Extreme 
Learning Machine (ELM) as classification algorithm because of its simplicity in 
training process and good generalization performance. Aside classification 
algorithm, the most important problem need to be addressed is imbalanced 
data between samples of positive class (prone to defect) and negative class. 
Such imbalance problem could bias the performance of classifier. Therefore, 
this research compared some approaches to handle imbalance problem 
between SMOTE (resampling method) and weighted-ELM (algorithm-level 
method).The results of experiment using 10-fold cross validation on NASA 
MDP dataset show that including imbalance problem handling in building 
software defect prediction model is able to increase the specificity and g-mean 
of model. When the value of imbalance ratio is not very small, the SMOTE is 
better than weighted-ELM. Otherwise, weighted-ELM is better than SMOTE in 
term of sensitivity and g-mean, but worse in term of specificity and accuracy. 

  
1. Introduction 

Software testing is a crucial process in software development life cycle which is aimed to find errors of software 
before it is deployed to end user [1]. The results of software testing will affect the software quality. Incomplete software 
testing can result in bad software quality. However, comprehensive software testing activities need big resources in 
term of cost, human and time, especially if the developed software is complex and large scale [2]. Software testing can 
be conducted more efficiently by focusing this activitiy to software modules which is prone to defect. Then, the testing 
process can be more focused to those parts. One of the approaches for predicting software defect is based on software 
metrics that describe the properties of software [3]. Therefore, an automated software defect prediction model can be 
built based on those software metrics. In term of machine learning, such kind of model can be built by using supervised 
learning or classification algorithm. 

The various classification algorithm have been implemented for predicting software defect, such as Artificial 
Neural Network (ANN) [4][5], Support Vector Machine (SVM) [6] and Naïve-Bayes classifier [7]. Naïve-Bayes classifier 
assumes that every attribute (software metric) is conditional independence to the class of software defect [8], while in 
the case of software defect prediction these attributes is not truly conditional independence to the class of software 
defect. When using ANN, gradient-descent learning algorithm is usually implemented. This learning algorithm usually 
needs many iteration to reach convergency and involves many parameters in its training process. The other learning 
algorithm for ANN that can solve the limitation of gradient-descent learning is extreme learning machine (ELM). The 
training process of ELM is extremely fast because it only needs one iteration. ELM also involves less number of 
parameter in its training process [9]. ELM is also faster and more scalable than SVM. Moreover in binary classification 
case the generalization performance of ELM is better than ANN and similar to SVM [10].  

In spite of classification algorithm, the other important problem in software defect prediction is the imbalance ratio 
between number of samples inpossitive class (prone to defect) and negative class. The value of imbalance ratio can 
reach 1/100, even 1/1000 in certain dataset. Classifications on imbalanced dataset can bias the performance of the 
resulting classifier. The classifier usually is able to achievehigh accuracy, but not in sensitivity. For example, when 
number of samples of positive class is 10 and number of negative class is 90 and classifier always classifies each 
sample into negative class, then the classifier can achieve 90% accuracy. However, it can not be claimed that it is a 
good classifier because it never classifies a sample into possitive class, as the positive class is the topic of interest. 
Therefore, it is needed an additional method for handling imbalanced data distribution in order to get optimal results 
[11]. 
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There are three strategies for handling the problem of imbalanced data: i) by modifying the dataset (data-lavel or 
resampling method); ii) by modifying classification algorithm (algorithm-level method); iii) by modifying the 
misclassification cost (cost sensitive method). The third strategy is used less frequently that the fisrt and second strategy 
because the difficulties in estimating the value of misclassification cost correctly. Resampling method modifies the 
distribution of dataset to achieve balance ratio between number of positive class and negative class. The advantages 
of this method is its flexibility because it is independence to the classification algorithm [12]. Synthetic Minority Over-
sampling Technique (SMOTE) is one of the popular resampling methods that has been frequently used in many cases 
[13]. Some modification of SMOTE have also been developed, but experiments show that the performance of original 
or modified version of SMOTE is subjected to the dataset and classification algorithm. SMOTE is able to reach better 
performance than the modified version in certain dataset and classification algorithm [14].Therefore, this research uses 
SMOTE which is the benchmark of oversampling method that have been successfully applied in many cases to improve 
the generalization performance of classifier in minority class [14][15][16]. SMOTE even still has good performance when 
the number of samples in minority class is quite small [11]. 

In contrast to resampling method,algorithm-level method does not modify the dataset, but modifies the 
classification algorithm directly [12]. Since this research implements ELM classification algorithm, the modification of 
ELM which is designed to cope directly with imbalanced data problem, namely weighted-ELM, is implemented in this 
research. Weighted-ELM introduced weighted matrix in the calculation of output weights that is aimed to move boundary 
line toward to the area of majority class in order to increase the generalization performance in the minority 
class.Experiment results show that weighted-ELM has better performance than original ELM as classifier on imbalanced 
dataset [17]. 

This research is aimed to create and compare models for predicting software defect by using three scenarios: i) 
directly classification using ELM (without imbalanced data handling); ii) resampling dataset using SMOTE followed by 
classification using ELM (SMOTE-ELM); iii) directly classification using weighted-ELM that have encountered 
imbalanced data handling in its algorithm. The resulting models are then evaluated to measure their performance. 

 
2. Research Method 

There are two process involved to build a classification model for software defect prediction, the training and 
testing process. The training is aimed to create a model, while testing is aimed to evaluate the resulting model and 
select the best model. Figure 1 shows the flowchart for the second scenario (SMOTE-ELM). In training process, over-
sampling is applied before classification to balance the dataset. When appliying the first scenario (ELM without 
resampling) and the third scenario (weighted ELM) the process of oversampling is removed, while in the third scenario 
ELM is replaced by weighted-ELM. 

 

 
Figure 1.The Research Flowchart 

 
2.1 Dataset 

This research used dataset from NASA MDP dataset PC1, PC2, PC3 and PC4 in cleaned data version [18]. 
Those dataset can be downloaded in https://github.com/klainfo/NASADefectDataset.The description of each dataset 
are shown at Table 1 where 𝑑 is the number of feature attributes and 𝑁 is number of samples. The imbalance ratio is 
ratio between number of samples in positive class (prone to defect) and number of samples in negative class. Each 
dataset consists of some feature attributes and one decision attribute. The feature attributes are numeric software 
metrics that are used as an input feature for prediction, while the decision attribute is the output class which shows the 
existence of software defect (yes or no).  
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Table 1. Description of Dataset 

Dataset 𝑑 𝑁 
Number of 

negative samples 
Number of 

positive samples 
Imbalance ratio 

PC1 37 735 674 61 0.0905 
PC2 36 1493 1477 16 0.0108 
PC3 37 1099 961 138 0.1436 
PC4 37 1380 1201 179 0.1490 

 
2.2 Normalization 

Normalization is aimed to scale the value of each feature in the dataset into a specific range and prevent 
overweighing from feature with large range value to feature with small range value.  Each feature in the dataset are 
normalized into [-1,1] using min-max normalization as suggested by [10].For target or decision attribute, the value is set 
to 1 if it belongs to positive class (prone to defect) and -1 if it belongs to negative class. 
 

Function SMOTE(Sample[1..T][1..numattrs] :arrayofarrayofreal, T : integer, numattrs: integer, N : integer, k: integer) 
<arrayofarrayofreal> 
{This function is used for over-sampling minority class samples. The parameters of this function are: 
Sample[][] is array original minority class samples  
T is number of samples in minority class 
numatrrs is the number of sample’s attributes 
N is percentage of over-sampling (N ≥ 100%)  
k is number of nearest neighbors 

Local Dictionary: 
i : integer {counter for original sample} 
nnarray : arrayofinteger {array for storing index of sample’s nearest neighbors} 
nn: integer {index of the choosen nearest neighbor of a sample} 
attr : integer {counter for sample’s attributes} 
dif : real {the difference of attribute value between synthetic sample and original samples} 
gap : real {random value between 0..1 for multiplying dif} 
newindex : integer {counter for generated synthetic samples} 
Synthetic : arrayofarrayofreal {array of generated synthetic samples} 

Algorithm: 
{initialization} 
newindex 0 
 
i traversal [1..T] 

{obtain k nearest neighbor for i-th sample using Euclidean distance formula and store location index of its 
nearest negihbors into nnarrays} 
<nnarray>compute_nearest_neighbor(Sample[i][1..numattrs]) 
{generate synthetic samples} 
N  (integer)(N/100) 
 
while N ≠ 0 

{choose a sample from k nearest neighbors of i-th sample randomly } 
nn random(1,k) {nn is random value between  1..k} 
 
attr traversal [1..numattrs] 

{calculate the difference between attribute value of sample’s nearest neighbor and its sample} 
dif Sample[nnarray[nn]][attr] – Sample[i][attr] 
gap  random(0,1) {gap is random value 0..1} 
Synthetic[newindex][attr] = Sample[i][attr] + gap*dif 

{end traversal attr} 
 
newindexnewindex + 1 
N  N-1 

{endwhile N ≠ 0} 
 

{end traversal i} 
 
Synthetic[0..newindex-1][1..numattrs] 

Figure 2. Pseudocode of SMOTE [13] 
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2.3 Synthetic Minority Over-sampling Technique (SMOTE) 
SMOTE is applied to balance the ratio of samples in posstive class and negative class. SMOTE creates a 

synthetic sample from minority class by choosing a point randomly in the line segment connecting a sample and its 
nearest neighbor. Figure 2 shows the pseudocode of SMOTE algorithm. There are two parameters in this algorithm. 
The first parameter is 𝑁, the amount of over-sampling. The second parameter is 𝑘, the number of nearest neighbor 
selected for creating synthetic samples. For example, if the number of samples in minority class is 10, the value of 𝑁 is 
set to 200% and the value of 𝑘 is set to 5, SMOTE will creates 2 synthetic samples for every samples in the minority 
class. Therefore, the total number of synthetic sample is 2 x 10 = 20 and the total number of samples in minority class 
now is 10 + 20 = 30 [13]. 
 
2.4 Extreme Learning Machine (ELM) 

ELM is a learning algorithm for artificial neural network which has single hidden layer and feedforward 
architecture. The learning algorithm of ELM only needs one iteration, so that the training process is extremely fast 
[9][10]. Figure 3 shows the architecture of artificial neural network used in this research. This network has 𝑑 input nodes 
thatare equal to number of feature attributes in each dataset, 𝐿 hidden nodesdanone output node that represents the 
decision attribute or existence of defect. This network apply radial basis function (RBF) hidden node, so thatparameter 

(𝐚𝑗 , 𝑏𝑗)𝑗=1
𝐿 from input nodesto hidden nodesarecenter vector𝐚𝑗andscaling parameterbjin the 𝑗-th hidden node. The 

weights from hidden nodesto output node is vector𝛃 = [𝛽1, … , 𝛽𝐿]
𝑇[19]. 

 

1 j L
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. . . .

x
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β1 βj
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. .

 
Figure 3. The Architecture of Network for ELM [19] 

 

Training algorithm of ELM uses 𝑁pairs of training sample, (𝐱𝑖 , 𝑡𝑖)𝑖=1
𝑁 where𝐱𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑]

𝑇 ∈
𝑅𝑑representfeature vector and𝑡𝑖represent target attribute of 𝑖-th sample. The training algorithm of ELM is described as 
follows [10]: 

[1] Initialize parameter (𝐚𝑗 , 𝑏𝑗)𝑗=1
𝐿 fromeach input node to1 . . 𝐿 hidden nodes randomly. 

[2] Calculate the matrix𝐇 (the output of eachhidden node1. . 𝐿for all training samples from1. .𝑁)using a specific 
activation function as Equation 1. This research used multiquadric activation function as shown in Equation 2.   
 

𝐇 = [
𝐡(𝐱1)
⋮

𝐡(𝐱𝑁)
] = [

ℎ1(𝐱1) … ℎ𝐿(𝐱1)
⋮ ⋮ ⋮

ℎ1(𝐱𝑁) … ℎ𝐿(𝐱𝑁)
]

𝑁×𝐿

 (1) 

  

ℎ𝑗(𝐱𝑖) = (‖𝐱 − 𝐚𝑗‖
2
+ 𝑏𝑗

2)1/2 (2) 

 
[3] Calculate vector 𝛃 = [𝛽1, … , 𝛽𝐿]

𝑇, the weights from hidden nodesto output node, as Equation 3. The vector𝐓is output 
vector containing target value for each training samples from 1. . 𝑁, 𝐈isidentity matrix, and𝐶isregularization 
parameter to increase the generalization performance. 
 

𝛃 =

{
 
 

 
 
𝐇T (

𝐈

𝐶
+ 𝐇𝐇𝐓)

−1

𝐓 if   𝑁 < 𝐿

(
𝐈

𝐶
+ 𝐇𝐓𝐇)

−1

𝐇T𝐓 if   𝑁 ≫ 𝐿
}
 
 

 
 

 (3) 
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In the testing process, class of an input sample 𝐱 can be predicted by using Equation 4 followed by Equation 5. 

Equation 4 is aimed to calculate the value of output network using parameter (𝐚𝑗 , 𝑏𝑗)𝑗=1
𝐿  and 𝛃 and also activation 

function from the training process, while Equation 5 is aimed to predict the class of output 𝑓(𝐱) [10]. 
 

𝑓(𝐱) = 𝐡(𝐱)𝛃 (4) 
  

𝑐𝑙𝑎𝑠𝑠(𝐱) = sign(𝑓(𝐱)) (5) 
 

ELM algorithm is not especially designed for used in imbalanced dataset. Therefore, in the imbalanced dataset 
to maximize the accuracy, the boundary line of classifier usually is movedtoward to the side of minority class. As a 
result, the generalization performance of classifier in the majority class is high, while in the minority class is low. But, 
the low performance in the minority class does not give significant effect on the end accuracy of classifier because the 
number of samples in the minority class is small enough. Therefore, ELM is modified into weighted-ELM which is 
especially designed for handling imbalanced data distribution [17]. 

Weighted-ELM modifies the training algorithm of ELM by adding diagonal weight matrix𝐖 =  𝑑𝑖𝑎𝑔{𝑤𝑖𝑖}, 𝑖 =
1, … ,𝑁. Each row of matrix 𝐖 is associated to each sample 𝐱𝑖 in the training data. The addition of this matrix is aimed 
to move boundary line toward to the area of majority class in order to increase the generalization performance in the 
minority class. But how much the boundary line is moved, should be carefully decided so that the generalization 
performance in the majority class does not decrease. Therefore, the value of 𝑤𝑖𝑖 is calculated using the golden ratio, 
0,618:1 as shown at Equation 6 for binary class problem. Then, the output weight matrix can be calculated by using 
Equation 7 [17]. 

 

𝑤𝑖𝑖 =

{
 

 
0.618

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠
, 𝑖𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝐱𝑖 is in majority class

1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠
, 𝑖𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝐱𝑖 is in minority class

 (6) 

  

𝛃 =

{
 
 

 
 
𝐇T (

𝐈

𝐶
+𝐖𝐇𝐇𝐓)

−1

𝐖𝐓 if 𝑁 < 𝐿

(
𝐈

𝐶
+𝐇𝐓𝐖𝐇)

−1

𝐇T𝐖𝐓 if 𝑁 ≫ 𝐿
}
 
 

 
 

 (7) 

 
2.5 Evaluation Metrics 

Binary classifier can be evaluated based on its accuracy, sensitivity and specificity. Accuracy is the comparison 
between number of samples predicted correctly by classifer and the total number of samples. Sensitivity is the accuracy 
of positive class, while specificity is the accuracy of negative class [8].The ratio between number of samples in positive 
class and negative class in the NASA MDP dataset is imbalanced, so that the use of accuracy as an evaluation metric 
is not quite representative. Therefore, in this research classifier is also evaluated by 𝑔 −𝑚𝑒𝑎𝑛 as shown at Equation 8. 
The value of 𝑔 − 𝑚𝑒𝑎𝑛 is not influenced by the balanceness of dataset because it considers the performance of classifier 
in both class, positive and negative [20]. 

 

𝐺 − 𝑚𝑒𝑎𝑛 =  √𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 (8) 

 
3. Results and Discussion 

In order to get comparating result, in this research the classifier for predicting software defect was built by using 
three scenarios: 1) directly classification using ELM; 2) over-sampling minority class using SMOTE followed by 
classification using ELM; 3) directly classification using modification of ELM, weighted-ELM. This experiment applied 
10-cross validation to divide dataset into training and testing data. First, dataset is divided into 10 parts where each part 
has the same ratio of positive samples and negative samples, then each experiment uses 9 part as training data and 1 
part as testing data. The experiment is repeated until 10 times using different part as testing data, then the reported 
result is the mean of result of 10 experiments [21].   

There are two parameters in the ELM training algorithm. They are number of hidden nodes 𝐿 and regularization 
parameter 𝐶. In this research, number of hidden nodes is set to 1000. Some prior research used 1000 hidden nodes 
for various dataset and concluded that as long as the number of hidden nodes is quite large, it does not make significant 
effect to the end result [10]. Therefore, there is only one remaining parameter to be adjusted, regularization parameter 

𝐶. The value of𝐶 is search from range {21, 22, … , 224, 225} to obtain optimal result.  
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In the over-sampling using SMOTE, there are also two parameters, they are number of nearest neighbors𝑘and 
percentage of over-sampling 𝑁. The value of 𝑁 in PC1, PC2 and PC3 dataset is set into certain number to make the 
ratio of positive and negative samples in training data close to 1. Then, the value of 𝑘 is set to 10 because in each 
dataset there are 6 to10 synthetic samples that would be created for each minority sample. In PC2 dataset the value 𝑘 
is set 12 because there are only 12 to 13 samples of positive or minority class in the training data and the maximum 
percentage of over-sampling is equal to number of nearest neighbor parameter since it only creates a synthetic sample 
for each nearest negihbor. As a result, the number of oversampled samples from minority class is still lower than the 
number of samples from majority class, so that the oversampled PC2 dataset are remain imbalanced. Table 2 shows 
the combination of SMOTE parameters in four datasets. 

 
Table 2. The Combination Value of SMOTE Parameters  

dataset 𝑘 𝑁 

PC1 10 1000 
PC2 12 1200 
PC3 10 600 
PC4 10 500 

 
The results of experiment using ELM, SMOTE-ELM and weighted ELM for all dataset are shown at Table 3, Table 

4, and Table 5, respectively. Then, the graphic at Figure 4 show the comparison of g-mean and accuracy.   
 

Table 3. The Results of Experiment Using ELM  

Dataset C Accuracy Sensitivity Specificity G-mean 

PC1 25 85.83% ± 3.43% 42.62% ± 13.86% 89.75% ± 2.89% 61.10% ± 11.26% 

PC2 25 97.19% ± 1.18% 30.00% ± 42.16% 97.97% ± 1.01% 33.82% ± 44.71% 

PC3 24 83.53% ± 2.43% 36.21% ± 12.65% 90.33% ± 3.02% 56.25% ± 10.18% 

PC4 20 86.80% ± 2.61% 42.75% ± 10.76% 93.34% ± 3.04% 62.60% ± 8.30% 

 
Table 4. The Results of Experiment Using SMOTE-ELM 

Dataset C Accuracy Sensitivity Specificity G-mean 

PC1 7 82.19% ± 6.87% 72.38% ± 24.31% 83.07% ± 7.11% 76.40% ± 14.00% 

PC2 9 98.06% ± 1.16% 40.00% ± 45.95% 98.78% ± 0.95% 43.96% ± 47.54% 

PC3 8 77.52% ± 4.41% 73.90% ± 13.13% 78.04% ± 4.23% 75.68% ± 7.67% 

PC4 9 83.97% ± 4.16% 82.68% ± 12.41% 84.19% ± 5.19% 83.11% ± 5.79% 

 
Table 5. The Results of Experiment Using Weighted-ELM  

Dataset C Accuracy Sensitivity Specificity G-mean 

PC1 12 73.05% ± 6.64% 86.67% ± 13.15% 71.78% ± 7.57% 78.47% ± 6.23% 

PC2 4 76.09% ± 3.55% 85.00% ± 24.15% 76.04% ± 3.66% 79.42% ± 11.89% 

PC3 12 66.69% ± 4.91% 84.01% ± 11.32% 64.20% ± 4.69% 73.32% ± 6.63% 

PC4 16 76.65% ± 3.58% 94.41% ± 5.86% 74.03% ± 4.57% 83.48% ± 2.22% 

 
The results on Table 3 show that directly classification using ELM without any handling for imbalanced data 

problem in all dataset, tend to achieve the highest accuracy and the lowest g-mean, compared to the other methods 
(SMOTE-ELM and weighted-ELM)as also shown by Figure 4. It is caused by the high value of specificity, but the low 
value of sensitivity, so that the the value of g-mean becomes low. However, because the number of positive samples is 
far smaller than the number of negative samples, especially in PC2 dataset, the value of accuracy remains high.  

In the second scenario, when SMOTE is added for over-sampling dataset before classification, it can be observed 
that the value of g-mean and sensitivity in all dataset are higher compared to the first scenario, but the value of accuracy 
and specificity decrease, except on PC2 dataset. In this case, the value of sensitivity is still lower than the value of 
specificity. This condition show that SMOTE is able to increase the generalization performance on positive class, but it 
is also followed by slightly drecreasing generalization performance on negative class. It can be observed that the 
increasement values of g-mean are higher than the decreasement values of accuracy from ELM to SMOTE-ELM. 
Otherwise, in PC2 dataset, the value of sensitivity and g-mean is still below 50% because the imbalance ratio in PC2 
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dataset is very small. This can be happen because SMOTE creates synthetic samples by interpolating from the nearest 
neighbors of the selected samples in minority class. As a result, when the number of minority class is very low, there 
are only few synthetic samples can be generated because of the limited number of nearest neighbor samples as a 
based to create synthetic samples, so that the number of oversampled minority class samples are still to far from the 
number of majority class samples. On the other word, the oversampled dataset remain imbalanced. 

Same as the second scenario, when using weighted-ELM the generalization performance on positive class 
(sensitivity) also increase, but it is also followed by drecreasing generalization performance on negative class 
(specificity). The value of sensitivity is even higher than the value of specificity (contrast to the result of the first and 
second scenario).Compared to SMOTE-ELM, theincreasement of sensitivity from the fisrt scenario is higher, but the 
thedecreasement of specificity is also higher. The values of g-mean are slightly lower on PC3 dataset, slightly higher 
on PC1 and PC4 dataset, and higher on PC2 dataset. Otherwise, the accuracy of weighted-ELM are lower than 
accuracy of SMOTE-ELM in all dataset. On PC2 dataset, the value of imbalance ratio is very small so that in the learning 
algorithm of weighted-ELM the minority samples are given high value in the calculation of weight matrix 𝐖. As a result, 
the boundary line is moved toward to the area of majority class. Then, it causes the generalization performance of 
minority class increase, but the generalization of majority class decrease. Because the number of majority class samples 
are far higher than the number of minority class samples, the value of accuracy also decreases.  

From this comparison, it can be concluded that in this software prediction case, incuding the imbalanced data 
handling is able to improve the performance of classifier in term of sensitivity and g-mean, but is also followed by slightly 
decreasing performance in term of specificity and accuracy. SMOTE-ELM is better than weighted-ELM, especially when 
the imbalance ratio is not very small (in PC3 and PC4 dataset). Otherwise, when the imbalance ratio is very small, 
especially in PC2 dataset, SMOTE is not able to reach good sensitivity and g-mean. When the value of imbalance ratio 
is very small, weighted-ELM can achived highersensitivity and g-mean compared to SMOTE-ELM, but lower specificity 
and accuracy. Generally, weighted-ELM is able to much increase the generalization performance in minority class, but 
as a consequence it also much decrease the generalization performance in majority class. While, when using SMOTE 
the incresement of generalization performance in minority class and the decrasement of generalization performance in 
majority class are smoother than in weighted-ELM. 

 

 
(a) 

 
(b) 

Figure 4. The Comparison of g-mean (a) and Accuracy (b) in All Dataset 
 

The comparison with other research can be seen in Table 6. Generally, the imbalance handling method used in 
this research (both, SMOTE and weighted-ELM) is able to reach better g-mean than in the other research [5][22] (except 
for PC2 dataset in SMOTE-ELM), but most of the accuracy achieved by this research is still lower. This condition can 
happen because the increasing permormance of classifier in minority class are still followed by the decrasing 
performance in majority class.  

 
Table 6. The Comparison with Other Researches 

Metric Dataset 
SMOTE-

ELM 
Weighted-

ELM 
Logistic Regression 
and Resampling [22] 

Neural Network and Random 
Undersampling [5] 

G
-M

e
a
n
 

PC1 76.40% 78.47% 55.10% 65.00% 
PC2 43.96% 79.42% - 73.00% 
PC3 75.68% 73.32% 43.80% 66.00% 
PC4 83.11% 83.48% 73.50% 62.00%       

A
c
c
u
ra

c
y
 

PC1 82.19% 73.05% 93.41% 87.80% 

PC2 98.06% 76.09% - 69.40% 

PC3 77.52% 66.69% 86.31% 61.00% 

PC4 83.97% 76.65% 90.64% 84.60% 
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4. Conclusion 
In this research the classifiers for software defect prediction was built. For building the classifier model, four 

dataset from NASA MDP were used, they are PC1, PC2, PC3 and PC4 dataset. One of the important problems in those 
dataset is the imbalance data distribution between samples of positive class and samples of negative class. Therefore, 
in this research a method for handling this imbalance data problem was added. In order to get comparating result, the 
classifierswere built by using three scenarios: 1) directly classification using ELM; 2) over-sampling minority class using 
SMOTE followed by classification using ELM; 3) directly classification using modification of ELM, weighted-ELM.  

The results of experiment using 10-fold cross validation show that directly classification using ELM obtain the 
worse result compared to the other scenarios. Therefore in this software defect prediction case, it can be concluded 
that incuding the imbalanced data handling is able to improve the generalization performance of classifier in minority 
class. When the value of imbalance ratio is not very small the SMOTE-ELM is better than weighted-ELM because 
SMOTE-ELM can achieve higher value, both in g-mean and accuracy. When the value of imbalance ratio is very small, 
weighted-ELM is better than SMOTE-ELM in term of sensitivity and g-mean, but worse than SMOTE-ELM in term of 
specificity and accuracy. 

The future research can improve the way to handle imbalance problems so as not to worsen performance in the 
majority class. In addition, the future research can also examine the method for selecting features or attributes that play 
signigicant role to the prediction class. The reduction of number of features as input to a classfieris expected to increase 
the performance of classifier. 
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