
Cite: Khadijah, K., & Sasongko, P. (2020). Software Defect Prediction Using Synthetic Minority Over-sampling Technique and Extreme Learning
Machine. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 5(3).
doi:https://doi.org/10.22219/kinetik.v5i3.1049

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
Journal homepage: http://kinetik.umm.ac.id
ISSN: 2503-2267
Vol. 4, No. 3, August 2019, Pp. 277-288

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control
Journal homepage: http://kinetik.umm.ac.id

ISSN: 2503-2267
Vol. 5, No. 3, August 2020, Pp. 203-210

203

 The comparison of imbalanced data handling method in software
defect prediction

Khadijah*1, Priyo Sidik Sasongko2

Department of Informatics, Universitas Diponegoro, Indonesia1,2

Article Info Abstract
Keywords:

Extreme Learning Machine (ELM), Software
Defect Prediction, SMOTE, Weighted-ELM

Article history:
Received 11 February 2020
Revised 05 May 2020

Accepted 13 August 2020
Published 31 August 2020

Cite:
Khadijah, K., & Sasongko, P. (2020). Software
Defect Prediction Using Synthetic Minority

Over-sampling Technique and Extreme
Learning Machine. Kinetik: Game Technology,
Information System, Computer Network,

Computing, Electronics, and Control, 5(3).
doi:https://doi.org/10.22219/kinetik.v5i3.1049

*Corresponding author.
khadijah
E-mail address:

khadijah@live.undip.ac.id

Software testing is a crucial process in software development life cycle which
will affect the software quality. However, testing is a tedious task and resource
consuming. Software testing can be conducted more efficiently by focusing this
activitiy to software modules which is prone to defect. Therefore, an automated
software defect prediction is needed. This research implemented Extreme
Learning Machine (ELM) as classification algorithm because of its simplicity in
training process and good generalization performance. Aside classification
algorithm, the most important problem need to be addressed is imbalanced
data between samples of positive class (prone to defect) and negative class.
Such imbalance problem could bias the performance of classifier. Therefore,
this research compared some approaches to handle imbalance problem
between SMOTE (resampling method) and weighted-ELM (algorithm-level
method).The results of experiment using 10-fold cross validation on NASA
MDP dataset show that including imbalance problem handling in building
software defect prediction model is able to increase the specificity and g-mean
of model. When the value of imbalance ratio is not very small, the SMOTE is
better than weighted-ELM. Otherwise, weighted-ELM is better than SMOTE in
term of sensitivity and g-mean, but worse in term of specificity and accuracy.

1. Introduction

Software testing is a crucial process in software development life cycle which is aimed to find errors of software
before it is deployed to end user [1]. The results of software testing will affect the software quality. Incomplete software
testing can result in bad software quality. However, comprehensive software testing activities need big resources in
term of cost, human and time, especially if the developed software is complex and large scale [2]. Software testing can
be conducted more efficiently by focusing this activitiy to software modules which is prone to defect. Then, the testing
process can be more focused to those parts. One of the approaches for predicting software defect is based on software
metrics that describe the properties of software [3]. Therefore, an automated software defect prediction model can be
built based on those software metrics. In term of machine learning, such kind of model can be built by using supervised
learning or classification algorithm.

The various classification algorithm have been implemented for predicting software defect, such as Artificial
Neural Network (ANN) [4][5], Support Vector Machine (SVM) [6] and Naïve-Bayes classifier [7]. Naïve-Bayes classifier
assumes that every attribute (software metric) is conditional independence to the class of software defect [8], while in
the case of software defect prediction these attributes is not truly conditional independence to the class of software
defect. When using ANN, gradient-descent learning algorithm is usually implemented. This learning algorithm usually
needs many iteration to reach convergency and involves many parameters in its training process. The other learning
algorithm for ANN that can solve the limitation of gradient-descent learning is extreme learning machine (ELM). The
training process of ELM is extremely fast because it only needs one iteration. ELM also involves less number of
parameter in its training process [9]. ELM is also faster and more scalable than SVM. Moreover in binary classification
case the generalization performance of ELM is better than ANN and similar to SVM [10].

In spite of classification algorithm, the other important problem in software defect prediction is the imbalance ratio
between number of samples inpossitive class (prone to defect) and negative class. The value of imbalance ratio can
reach 1/100, even 1/1000 in certain dataset. Classifications on imbalanced dataset can bias the performance of the
resulting classifier. The classifier usually is able to achievehigh accuracy, but not in sensitivity. For example, when
number of samples of positive class is 10 and number of negative class is 90 and classifier always classifies each
sample into negative class, then the classifier can achieve 90% accuracy. However, it can not be claimed that it is a
good classifier because it never classifies a sample into possitive class, as the positive class is the topic of interest.
Therefore, it is needed an additional method for handling imbalanced data distribution in order to get optimal results
[11].

https://doi.org/10.22219/kinetik.v5i3.1049
http://kinetik.umm.ac.id/
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1457736067&1&&2016
http://kinetik.umm.ac.id/
http://issn.pdii.lipi.go.id/issn.cgi?daftar&1457736067&1&&2016
http://kinetik.umm.ac.id
https://doi.org/10.22219/kinetik.v5i3.1049
https://crossmark.crossref.org/dialog/?doi=10.22219/kinetik.v5i3.1049&domain=pdf

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

© 2020 The Authors. Published by Universitas Muhammadiyah Malang

This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/)

204

There are three strategies for handling the problem of imbalanced data: i) by modifying the dataset (data-lavel or
resampling method); ii) by modifying classification algorithm (algorithm-level method); iii) by modifying the
misclassification cost (cost sensitive method). The third strategy is used less frequently that the fisrt and second strategy
because the difficulties in estimating the value of misclassification cost correctly. Resampling method modifies the
distribution of dataset to achieve balance ratio between number of positive class and negative class. The advantages
of this method is its flexibility because it is independence to the classification algorithm [12]. Synthetic Minority Over-
sampling Technique (SMOTE) is one of the popular resampling methods that has been frequently used in many cases
[13]. Some modification of SMOTE have also been developed, but experiments show that the performance of original
or modified version of SMOTE is subjected to the dataset and classification algorithm. SMOTE is able to reach better
performance than the modified version in certain dataset and classification algorithm [14].Therefore, this research uses
SMOTE which is the benchmark of oversampling method that have been successfully applied in many cases to improve
the generalization performance of classifier in minority class [14][15][16]. SMOTE even still has good performance when
the number of samples in minority class is quite small [11].

In contrast to resampling method,algorithm-level method does not modify the dataset, but modifies the
classification algorithm directly [12]. Since this research implements ELM classification algorithm, the modification of
ELM which is designed to cope directly with imbalanced data problem, namely weighted-ELM, is implemented in this
research. Weighted-ELM introduced weighted matrix in the calculation of output weights that is aimed to move boundary
line toward to the area of majority class in order to increase the generalization performance in the minority
class.Experiment results show that weighted-ELM has better performance than original ELM as classifier on imbalanced
dataset [17].

This research is aimed to create and compare models for predicting software defect by using three scenarios: i)
directly classification using ELM (without imbalanced data handling); ii) resampling dataset using SMOTE followed by
classification using ELM (SMOTE-ELM); iii) directly classification using weighted-ELM that have encountered
imbalanced data handling in its algorithm. The resulting models are then evaluated to measure their performance.

2. Research Method

There are two process involved to build a classification model for software defect prediction, the training and
testing process. The training is aimed to create a model, while testing is aimed to evaluate the resulting model and
select the best model. Figure 1 shows the flowchart for the second scenario (SMOTE-ELM). In training process, over-
sampling is applied before classification to balance the dataset. When appliying the first scenario (ELM without
resampling) and the third scenario (weighted ELM) the process of oversampling is removed, while in the third scenario
ELM is replaced by weighted-ELM.

Figure 1.The Research Flowchart

2.1 Dataset

This research used dataset from NASA MDP dataset PC1, PC2, PC3 and PC4 in cleaned data version [18].
Those dataset can be downloaded in https://github.com/klainfo/NASADefectDataset.The description of each dataset
are shown at Table 1 where 𝑑 is the number of feature attributes and 𝑁 is number of samples. The imbalance ratio is
ratio between number of samples in positive class (prone to defect) and number of samples in negative class. Each
dataset consists of some feature attributes and one decision attribute. The feature attributes are numeric software
metrics that are used as an input feature for prediction, while the decision attribute is the output class which shows the
existence of software defect (yes or no).

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/klainfo/NASADefectDataset

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Cite: Khadijah, K., & Sasongko, P. (2020). Software Defect Prediction Using Synthetic Minority Over-sampling Technique and Extreme Learning

Machine. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 5(3).
doi:https://doi.org/10.22219/kinetik.v5i3.1049

205

Table 1. Description of Dataset

Dataset 𝑑 𝑁
Number of

negative samples
Number of

positive samples
Imbalance ratio

PC1 37 735 674 61 0.0905
PC2 36 1493 1477 16 0.0108
PC3 37 1099 961 138 0.1436
PC4 37 1380 1201 179 0.1490

2.2 Normalization

Normalization is aimed to scale the value of each feature in the dataset into a specific range and prevent
overweighing from feature with large range value to feature with small range value. Each feature in the dataset are
normalized into [-1,1] using min-max normalization as suggested by [10].For target or decision attribute, the value is set
to 1 if it belongs to positive class (prone to defect) and -1 if it belongs to negative class.

Function SMOTE(Sample[1..T][1..numattrs] :arrayofarrayofreal, T : integer, numattrs: integer, N : integer, k: integer)
<arrayofarrayofreal>
{This function is used for over-sampling minority class samples. The parameters of this function are:
Sample[][] is array original minority class samples
T is number of samples in minority class
numatrrs is the number of sample’s attributes
N is percentage of over-sampling (N ≥ 100%)
k is number of nearest neighbors

Local Dictionary:
i : integer {counter for original sample}
nnarray : arrayofinteger {array for storing index of sample’s nearest neighbors}
nn: integer {index of the choosen nearest neighbor of a sample}
attr : integer {counter for sample’s attributes}
dif : real {the difference of attribute value between synthetic sample and original samples}
gap : real {random value between 0..1 for multiplying dif}
newindex : integer {counter for generated synthetic samples}
Synthetic : arrayofarrayofreal {array of generated synthetic samples}

Algorithm:
{initialization}
newindex 0

i traversal [1..T]

{obtain k nearest neighbor for i-th sample using Euclidean distance formula and store location index of its
nearest negihbors into nnarrays}
<nnarray>compute_nearest_neighbor(Sample[i][1..numattrs])
{generate synthetic samples}
N  (integer)(N/100)

while N ≠ 0

{choose a sample from k nearest neighbors of i-th sample randomly }
nn random(1,k) {nn is random value between 1..k}

attr traversal [1..numattrs]

{calculate the difference between attribute value of sample’s nearest neighbor and its sample}
dif Sample[nnarray[nn]][attr] – Sample[i][attr]
gap  random(0,1) {gap is random value 0..1}
Synthetic[newindex][attr] = Sample[i][attr] + gap*dif

{end traversal attr}

newindexnewindex + 1
N  N-1

{endwhile N ≠ 0}

{end traversal i}

Synthetic[0..newindex-1][1..numattrs]

Figure 2. Pseudocode of SMOTE [13]

https://doi.org/10.22219/kinetik.v5i3.1049

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

© 2020 The Authors. Published by Universitas Muhammadiyah Malang

This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/)

206

2.3 Synthetic Minority Over-sampling Technique (SMOTE)
SMOTE is applied to balance the ratio of samples in posstive class and negative class. SMOTE creates a

synthetic sample from minority class by choosing a point randomly in the line segment connecting a sample and its
nearest neighbor. Figure 2 shows the pseudocode of SMOTE algorithm. There are two parameters in this algorithm.
The first parameter is 𝑁, the amount of over-sampling. The second parameter is 𝑘, the number of nearest neighbor
selected for creating synthetic samples. For example, if the number of samples in minority class is 10, the value of 𝑁 is
set to 200% and the value of 𝑘 is set to 5, SMOTE will creates 2 synthetic samples for every samples in the minority
class. Therefore, the total number of synthetic sample is 2 x 10 = 20 and the total number of samples in minority class
now is 10 + 20 = 30 [13].

2.4 Extreme Learning Machine (ELM)

ELM is a learning algorithm for artificial neural network which has single hidden layer and feedforward
architecture. The learning algorithm of ELM only needs one iteration, so that the training process is extremely fast
[9][10]. Figure 3 shows the architecture of artificial neural network used in this research. This network has 𝑑 input nodes
thatare equal to number of feature attributes in each dataset, 𝐿 hidden nodesdanone output node that represents the
decision attribute or existence of defect. This network apply radial basis function (RBF) hidden node, so thatparameter

(𝐚𝑗 , 𝑏𝑗)𝑗=1
𝐿 from input nodesto hidden nodesarecenter vector𝐚𝑗andscaling parameterbjin the 𝑗-th hidden node. The

weights from hidden nodesto output node is vector𝛃 = [𝛽1, … , 𝛽𝐿]
𝑇[19].

1 j L

1 d

. . . .

x

f(x)

d Input Nodes

L Hidden Nodes

Output Node

(aj,bj)

β1 βj

βL

. .

Figure 3. The Architecture of Network for ELM [19]

Training algorithm of ELM uses 𝑁pairs of training sample, (𝐱𝑖 , 𝑡𝑖)𝑖=1
𝑁 where𝐱𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑]

𝑇 ∈
𝑅𝑑representfeature vector and𝑡𝑖represent target attribute of 𝑖-th sample. The training algorithm of ELM is described as
follows [10]:

[1] Initialize parameter (𝐚𝑗 , 𝑏𝑗)𝑗=1
𝐿 fromeach input node to1 . . 𝐿 hidden nodes randomly.

[2] Calculate the matrix𝐇 (the output of eachhidden node1. . 𝐿for all training samples from1. .𝑁)using a specific
activation function as Equation 1. This research used multiquadric activation function as shown in Equation 2.

𝐇 = [
𝐡(𝐱1)
⋮

𝐡(𝐱𝑁)
] = [

ℎ1(𝐱1) … ℎ𝐿(𝐱1)
⋮ ⋮ ⋮

ℎ1(𝐱𝑁) … ℎ𝐿(𝐱𝑁)
]

𝑁×𝐿

 (1)

ℎ𝑗(𝐱𝑖) = (‖𝐱 − 𝐚𝑗‖
2
+ 𝑏𝑗

2)1/2 (2)

[3] Calculate vector 𝛃 = [𝛽1, … , 𝛽𝐿]

𝑇, the weights from hidden nodesto output node, as Equation 3. The vector𝐓is output
vector containing target value for each training samples from 1. . 𝑁, 𝐈isidentity matrix, and𝐶isregularization
parameter to increase the generalization performance.

𝛃 =

{

𝐇T (

𝐈

𝐶
+ 𝐇𝐇𝐓)

−1

𝐓 if 𝑁 < 𝐿

(
𝐈

𝐶
+ 𝐇𝐓𝐇)

−1

𝐇T𝐓 if 𝑁 ≫ 𝐿
}

 (3)

https://creativecommons.org/licenses/by-sa/4.0/

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Cite: Khadijah, K., & Sasongko, P. (2020). Software Defect Prediction Using Synthetic Minority Over-sampling Technique and Extreme Learning

Machine. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 5(3).
doi:https://doi.org/10.22219/kinetik.v5i3.1049

207

In the testing process, class of an input sample 𝐱 can be predicted by using Equation 4 followed by Equation 5.

Equation 4 is aimed to calculate the value of output network using parameter (𝐚𝑗 , 𝑏𝑗)𝑗=1
𝐿 and 𝛃 and also activation

function from the training process, while Equation 5 is aimed to predict the class of output 𝑓(𝐱) [10].

𝑓(𝐱) = 𝐡(𝐱)𝛃 (4)

𝑐𝑙𝑎𝑠𝑠(𝐱) = sign(𝑓(𝐱)) (5)

ELM algorithm is not especially designed for used in imbalanced dataset. Therefore, in the imbalanced dataset
to maximize the accuracy, the boundary line of classifier usually is movedtoward to the side of minority class. As a
result, the generalization performance of classifier in the majority class is high, while in the minority class is low. But,
the low performance in the minority class does not give significant effect on the end accuracy of classifier because the
number of samples in the minority class is small enough. Therefore, ELM is modified into weighted-ELM which is
especially designed for handling imbalanced data distribution [17].

Weighted-ELM modifies the training algorithm of ELM by adding diagonal weight matrix𝐖 = 𝑑𝑖𝑎𝑔{𝑤𝑖𝑖}, 𝑖 =
1, … ,𝑁. Each row of matrix 𝐖 is associated to each sample 𝐱𝑖 in the training data. The addition of this matrix is aimed
to move boundary line toward to the area of majority class in order to increase the generalization performance in the
minority class. But how much the boundary line is moved, should be carefully decided so that the generalization
performance in the majority class does not decrease. Therefore, the value of 𝑤𝑖𝑖 is calculated using the golden ratio,
0,618:1 as shown at Equation 6 for binary class problem. Then, the output weight matrix can be calculated by using
Equation 7 [17].

𝑤𝑖𝑖 =

{

0.618

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠
, 𝑖𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝐱𝑖 is in majority class

1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠
, 𝑖𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝐱𝑖 is in minority class

 (6)

𝛃 =

{

𝐇T (

𝐈

𝐶
+𝐖𝐇𝐇𝐓)

−1

𝐖𝐓 if 𝑁 < 𝐿

(
𝐈

𝐶
+𝐇𝐓𝐖𝐇)

−1

𝐇T𝐖𝐓 if 𝑁 ≫ 𝐿
}

 (7)

2.5 Evaluation Metrics

Binary classifier can be evaluated based on its accuracy, sensitivity and specificity. Accuracy is the comparison
between number of samples predicted correctly by classifer and the total number of samples. Sensitivity is the accuracy
of positive class, while specificity is the accuracy of negative class [8].The ratio between number of samples in positive
class and negative class in the NASA MDP dataset is imbalanced, so that the use of accuracy as an evaluation metric
is not quite representative. Therefore, in this research classifier is also evaluated by 𝑔 −𝑚𝑒𝑎𝑛 as shown at Equation 8.
The value of 𝑔 − 𝑚𝑒𝑎𝑛 is not influenced by the balanceness of dataset because it considers the performance of classifier
in both class, positive and negative [20].

𝐺 − 𝑚𝑒𝑎𝑛 = √𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 (8)

3. Results and Discussion

In order to get comparating result, in this research the classifier for predicting software defect was built by using
three scenarios: 1) directly classification using ELM; 2) over-sampling minority class using SMOTE followed by
classification using ELM; 3) directly classification using modification of ELM, weighted-ELM. This experiment applied
10-cross validation to divide dataset into training and testing data. First, dataset is divided into 10 parts where each part
has the same ratio of positive samples and negative samples, then each experiment uses 9 part as training data and 1
part as testing data. The experiment is repeated until 10 times using different part as testing data, then the reported
result is the mean of result of 10 experiments [21].

There are two parameters in the ELM training algorithm. They are number of hidden nodes 𝐿 and regularization
parameter 𝐶. In this research, number of hidden nodes is set to 1000. Some prior research used 1000 hidden nodes
for various dataset and concluded that as long as the number of hidden nodes is quite large, it does not make significant
effect to the end result [10]. Therefore, there is only one remaining parameter to be adjusted, regularization parameter

𝐶. The value of𝐶 is search from range {21, 22, … , 224, 225} to obtain optimal result.

https://doi.org/10.22219/kinetik.v5i3.1049

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

© 2020 The Authors. Published by Universitas Muhammadiyah Malang

This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/)

208

In the over-sampling using SMOTE, there are also two parameters, they are number of nearest neighbors𝑘and
percentage of over-sampling 𝑁. The value of 𝑁 in PC1, PC2 and PC3 dataset is set into certain number to make the
ratio of positive and negative samples in training data close to 1. Then, the value of 𝑘 is set to 10 because in each
dataset there are 6 to10 synthetic samples that would be created for each minority sample. In PC2 dataset the value 𝑘
is set 12 because there are only 12 to 13 samples of positive or minority class in the training data and the maximum
percentage of over-sampling is equal to number of nearest neighbor parameter since it only creates a synthetic sample
for each nearest negihbor. As a result, the number of oversampled samples from minority class is still lower than the
number of samples from majority class, so that the oversampled PC2 dataset are remain imbalanced. Table 2 shows
the combination of SMOTE parameters in four datasets.

Table 2. The Combination Value of SMOTE Parameters

dataset 𝑘 𝑁

PC1 10 1000
PC2 12 1200
PC3 10 600
PC4 10 500

The results of experiment using ELM, SMOTE-ELM and weighted ELM for all dataset are shown at Table 3, Table

4, and Table 5, respectively. Then, the graphic at Figure 4 show the comparison of g-mean and accuracy.

Table 3. The Results of Experiment Using ELM

Dataset C Accuracy Sensitivity Specificity G-mean

PC1 25 85.83% ± 3.43% 42.62% ± 13.86% 89.75% ± 2.89% 61.10% ± 11.26%

PC2 25 97.19% ± 1.18% 30.00% ± 42.16% 97.97% ± 1.01% 33.82% ± 44.71%

PC3 24 83.53% ± 2.43% 36.21% ± 12.65% 90.33% ± 3.02% 56.25% ± 10.18%

PC4 20 86.80% ± 2.61% 42.75% ± 10.76% 93.34% ± 3.04% 62.60% ± 8.30%

Table 4. The Results of Experiment Using SMOTE-ELM

Dataset C Accuracy Sensitivity Specificity G-mean

PC1 7 82.19% ± 6.87% 72.38% ± 24.31% 83.07% ± 7.11% 76.40% ± 14.00%

PC2 9 98.06% ± 1.16% 40.00% ± 45.95% 98.78% ± 0.95% 43.96% ± 47.54%

PC3 8 77.52% ± 4.41% 73.90% ± 13.13% 78.04% ± 4.23% 75.68% ± 7.67%

PC4 9 83.97% ± 4.16% 82.68% ± 12.41% 84.19% ± 5.19% 83.11% ± 5.79%

Table 5. The Results of Experiment Using Weighted-ELM

Dataset C Accuracy Sensitivity Specificity G-mean

PC1 12 73.05% ± 6.64% 86.67% ± 13.15% 71.78% ± 7.57% 78.47% ± 6.23%

PC2 4 76.09% ± 3.55% 85.00% ± 24.15% 76.04% ± 3.66% 79.42% ± 11.89%

PC3 12 66.69% ± 4.91% 84.01% ± 11.32% 64.20% ± 4.69% 73.32% ± 6.63%

PC4 16 76.65% ± 3.58% 94.41% ± 5.86% 74.03% ± 4.57% 83.48% ± 2.22%

The results on Table 3 show that directly classification using ELM without any handling for imbalanced data

problem in all dataset, tend to achieve the highest accuracy and the lowest g-mean, compared to the other methods
(SMOTE-ELM and weighted-ELM)as also shown by Figure 4. It is caused by the high value of specificity, but the low
value of sensitivity, so that the the value of g-mean becomes low. However, because the number of positive samples is
far smaller than the number of negative samples, especially in PC2 dataset, the value of accuracy remains high.

In the second scenario, when SMOTE is added for over-sampling dataset before classification, it can be observed
that the value of g-mean and sensitivity in all dataset are higher compared to the first scenario, but the value of accuracy
and specificity decrease, except on PC2 dataset. In this case, the value of sensitivity is still lower than the value of
specificity. This condition show that SMOTE is able to increase the generalization performance on positive class, but it
is also followed by slightly drecreasing generalization performance on negative class. It can be observed that the
increasement values of g-mean are higher than the decreasement values of accuracy from ELM to SMOTE-ELM.
Otherwise, in PC2 dataset, the value of sensitivity and g-mean is still below 50% because the imbalance ratio in PC2

https://creativecommons.org/licenses/by-sa/4.0/

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Cite: Khadijah, K., & Sasongko, P. (2020). Software Defect Prediction Using Synthetic Minority Over-sampling Technique and Extreme Learning

Machine. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 5(3).
doi:https://doi.org/10.22219/kinetik.v5i3.1049

209

dataset is very small. This can be happen because SMOTE creates synthetic samples by interpolating from the nearest
neighbors of the selected samples in minority class. As a result, when the number of minority class is very low, there
are only few synthetic samples can be generated because of the limited number of nearest neighbor samples as a
based to create synthetic samples, so that the number of oversampled minority class samples are still to far from the
number of majority class samples. On the other word, the oversampled dataset remain imbalanced.

Same as the second scenario, when using weighted-ELM the generalization performance on positive class
(sensitivity) also increase, but it is also followed by drecreasing generalization performance on negative class
(specificity). The value of sensitivity is even higher than the value of specificity (contrast to the result of the first and
second scenario).Compared to SMOTE-ELM, theincreasement of sensitivity from the fisrt scenario is higher, but the
thedecreasement of specificity is also higher. The values of g-mean are slightly lower on PC3 dataset, slightly higher
on PC1 and PC4 dataset, and higher on PC2 dataset. Otherwise, the accuracy of weighted-ELM are lower than
accuracy of SMOTE-ELM in all dataset. On PC2 dataset, the value of imbalance ratio is very small so that in the learning
algorithm of weighted-ELM the minority samples are given high value in the calculation of weight matrix 𝐖. As a result,
the boundary line is moved toward to the area of majority class. Then, it causes the generalization performance of
minority class increase, but the generalization of majority class decrease. Because the number of majority class samples
are far higher than the number of minority class samples, the value of accuracy also decreases.

From this comparison, it can be concluded that in this software prediction case, incuding the imbalanced data
handling is able to improve the performance of classifier in term of sensitivity and g-mean, but is also followed by slightly
decreasing performance in term of specificity and accuracy. SMOTE-ELM is better than weighted-ELM, especially when
the imbalance ratio is not very small (in PC3 and PC4 dataset). Otherwise, when the imbalance ratio is very small,
especially in PC2 dataset, SMOTE is not able to reach good sensitivity and g-mean. When the value of imbalance ratio
is very small, weighted-ELM can achived highersensitivity and g-mean compared to SMOTE-ELM, but lower specificity
and accuracy. Generally, weighted-ELM is able to much increase the generalization performance in minority class, but
as a consequence it also much decrease the generalization performance in majority class. While, when using SMOTE
the incresement of generalization performance in minority class and the decrasement of generalization performance in
majority class are smoother than in weighted-ELM.

(a)

(b)

Figure 4. The Comparison of g-mean (a) and Accuracy (b) in All Dataset

The comparison with other research can be seen in Table 6. Generally, the imbalance handling method used in
this research (both, SMOTE and weighted-ELM) is able to reach better g-mean than in the other research [5][22] (except
for PC2 dataset in SMOTE-ELM), but most of the accuracy achieved by this research is still lower. This condition can
happen because the increasing permormance of classifier in minority class are still followed by the decrasing
performance in majority class.

Table 6. The Comparison with Other Researches

Metric Dataset
SMOTE-

ELM
Weighted-

ELM
Logistic Regression
and Resampling [22]

Neural Network and Random
Undersampling [5]

G
-M

e
a
n

PC1 76.40% 78.47% 55.10% 65.00%
PC2 43.96% 79.42% - 73.00%
PC3 75.68% 73.32% 43.80% 66.00%
PC4 83.11% 83.48% 73.50% 62.00%

A
c
c
u
ra

c
y

PC1 82.19% 73.05% 93.41% 87.80%

PC2 98.06% 76.09% - 69.40%

PC3 77.52% 66.69% 86.31% 61.00%

PC4 83.97% 76.65% 90.64% 84.60%

https://doi.org/10.22219/kinetik.v5i3.1049

Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

© 2020 The Authors. Published by Universitas Muhammadiyah Malang

This is an open access article under the CC BY SA license. (https://creativecommons.org/licenses/by-sa/4.0/)

210

4. Conclusion
In this research the classifiers for software defect prediction was built. For building the classifier model, four

dataset from NASA MDP were used, they are PC1, PC2, PC3 and PC4 dataset. One of the important problems in those
dataset is the imbalance data distribution between samples of positive class and samples of negative class. Therefore,
in this research a method for handling this imbalance data problem was added. In order to get comparating result, the
classifierswere built by using three scenarios: 1) directly classification using ELM; 2) over-sampling minority class using
SMOTE followed by classification using ELM; 3) directly classification using modification of ELM, weighted-ELM.

The results of experiment using 10-fold cross validation show that directly classification using ELM obtain the
worse result compared to the other scenarios. Therefore in this software defect prediction case, it can be concluded
that incuding the imbalanced data handling is able to improve the generalization performance of classifier in minority
class. When the value of imbalance ratio is not very small the SMOTE-ELM is better than weighted-ELM because
SMOTE-ELM can achieve higher value, both in g-mean and accuracy. When the value of imbalance ratio is very small,
weighted-ELM is better than SMOTE-ELM in term of sensitivity and g-mean, but worse than SMOTE-ELM in term of
specificity and accuracy.

The future research can improve the way to handle imbalance problems so as not to worsen performance in the
majority class. In addition, the future research can also examine the method for selecting features or attributes that play
signigicant role to the prediction class. The reduction of number of features as input to a classfieris expected to increase
the performance of classifier.

References
[1] R. S. Pressman, y Software Engineering: A Practitioner’s Approach Seventh Edition. McGraw-Hill, 2009.
[2] D. Galin, Software Quality: Concepts and Practice. IEEE Computer Society, 2018.
[3] P. Thi, M. Phuong, and P. H. Thong, “Empirical Study of Software Defect Prediction : A Systematic Mapping,” Symmetry (Basel)., Vol. 11, No.

212, Pp. 1–28, 2019. https://doi.org/10.3390/sym11020212
[4] T. Sethi and Gagandeep, “Improved Approach for Software Defect Prediction using Artificial Neural Networks,” in 5th International Conference

on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO) , 2016, Pp. 480–485.

https://doi.org/10.1109/ICRITO.2016.7785003
[5] E. Irawan and R. S. Wahono, “Penggunaan Random Under Sampling untukPenangananKetidakseimbanganKelaspadaPrediksiCacat Software

Berbasis Neural Network,” J. Softw. Eng., Vol. 1, No. 2, Pp. 92–100, 2015.

[6] X. Rong, F. Li, and Z. Cui, “A model for software defect prediction using support vector machine based on CBA,” Int. J. Intell. Syst. Technol.
Appl., Vol. 15, No. 1, Pp. 19–34, 2016.

[7] S. A. Putri and R. S. Wahono, “Integrasi SMOTE dan Information Gain pada Naive Bayes untukPrediksiCacat Software,” J. Softw. Eng., Vol.

1, No. 2, 2015.
[8] J. Han and M. Kamber, Data Mining: Concepts and Techniques Second Edition. San Farnsisco: Elsevier Inc., 2006.
[9] G. Huang, Q. Zhu, and C. Siew, “Extreme Learning Machine : Theory and Applications,” Neurocomputing, Vol. 70, Pp. 489–501, 2006.

https://doi.org/10.1016/j.neucom.2005.12.126
[10] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme Learning Machine for Regression and Multiclass Classification,” IEEE Trans. Syst.

Man, Cybern. - Part B Cybern., Vol. 42, No. 2, Pp. 513–528, 2012. https://doi.org/10.1109/TSMCB.2011.2168604

[11] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing, “Learning from class-imbalanced data: Review of methods and
applications,” Expert Syst. Appl., Vol. 73, Pp. 220–239, 2017. https://doi.org/10.1016/j.eswa.2016.12.035

[12] G. Douzas, F. Bacao, and F. Last, “Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE,”

Inf. Sci. (Ny)., Vol. 465, Pp. 1–20, 2018. https://doi.org/10.1016/j.ins.2018.06.056
[13] N.V.Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic minority over-sampling technique,” J. Artif. Intell.Res., Vol.

16, Pp. 321–357, 2002. https://doi.org/10.1613/jair.953

[14] Y. Suh, J. Yu, J. Mo, L. Song, C. Kim, “A Comparison of Oversampling Methods on Imbalanced Topic Classification of Korean News Articles”,
J. Cognitive Sci., Vol. 18, No. 4, Pp 391-437, 2017. https://doi.org/10.17791/jcs.2017.18.4.391

[15] P. Sarakit, T. Theeramunkong, and C. Haruechaiyasak, “Improving Emotion Classification in Imbalanced YouTube Dataset Using SMOTE

Algorithm,” in 2nd International Conference on Advanced Informatics: Concepts, Theory and Applications (ICAICTA) , 2015.
https://doi.org/10.1109/ICAICTA.2015.7335373

[16] L. Demidova and I. Klyueva, “SVM Classification : Optimization with the SMOTE Algorithm for the Class Imbalance Problem,” in 6th

Mediterranean Conference on Embedded Computing (MECO), 2017, No. 11-15 June, Pp. 17–20. https://doi.org/10.1109/MECO.2017.7977136
[17] W. Zong, G. Bin Huang, and Y. Chen, “Weighted extreme learning machine for imbalance learning,” Neurocomputing, Vol. 101, Pp. 229–242,

2013. https://doi.org/10.1016/j.neucom.2012.08.010

[18] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data Quality : Some Comments on the NASA Software Defect Datasets,” Vol. 39, No. 9, Pp.
1208–1215, 2013. https://doi.org/10.1109/TSE.2013.11

[19] G. Huang, “Extreme Learning Machine - Learning Without Iterative Tuning.” Tutorial in IJCNN2012/WCCI2012, Brisbane, 2012.

[20] I. K. Timotius and S. G. Miaou, “Arithmetic Means of Accuracies: A Classifier Performance Measurement for Imbalanced Data Set,” in
International Conference on Audio, Language and Image Processing (ICALIP), 2010, Pp. 1244–1251.
https://doi.org/10.1109/ICALIP.2010.5685124

[21] S. Haykin, Neural Networks - A Comprehensive Foundation, Second Edition. India: Pearson Education, 2005.
[22] H. Rianto and R. S. Wahono, “Resampling Logistic Regression untukPenangananKetidakseimbangan Class padaPrediksiCacat Software,” J.

Softw.Eng., Vol. 1, No. 1, Pp. 46–53, 2015.

https://creativecommons.org/licenses/by-sa/4.0/
https://whyphi.staff.telkomuniversity.ac.id/files/2016/01/ebook-pressman-sw-engineering.pdf
https://ieeexplore.ieee.org/book/8340186
https://doi.org/10.3390/sym11020212
https://doi.org/10.1109/ICRITO.2016.7785003
https://www.neliti.com/publications/90251/penggunaan-random-under-sampling-untuk-penanganan-ketidakseimbangan-kelas-pada-p
https://www.neliti.com/publications/90251/penggunaan-random-under-sampling-untuk-penanganan-ketidakseimbangan-kelas-pada-p
https://pdfs.semanticscholar.org/e4b4/7ffb5092f27002a52952b16031580edd5bb9.pdf
https://pdfs.semanticscholar.org/e4b4/7ffb5092f27002a52952b16031580edd5bb9.pdf
https://www.neliti.com/publications/90231/integrasi-smote-dan-information-gain-pada-naive-bayes-untuk-prediksi-cacat-softw
https://www.neliti.com/publications/90231/integrasi-smote-dan-information-gain-pada-naive-bayes-untuk-prediksi-cacat-softw
https://mitmecsept.files.wordpress.com/2017/04/data-mining-concepts-and-techniques-2nd-edition-impressao.pdf
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1109/TSMCB.2011.2168604
https://doi.org/10.1016/j.eswa.2016.12.035
https://doi.org/10.1016/j.ins.2018.06.056
https://doi.org/10.1613/jair.953
https://doi.org/10.17791/jcs.2017.18.4.391
https://doi.org/10.1109/ICAICTA.2015.7335373
https://doi.org/10.1109/MECO.2017.7977136
https://doi.org/10.1016/j.neucom.2012.08.010
https://doi.org/10.1109/TSE.2013.11
https://doi.org/10.1109/ICALIP.2010.5685124
https://www.researchgate.net/profile/Ashraf_Khalaf3/post/Does_anyone_have_current_information_on_back-propagation_in_artificial_neural_networks/attachment/59d621a279197b8077980002/AS%3A297484992696331%401447937358281/download/Neural+Networks+-+A+Comprehensive+Foundation+-+Simon+Haykin.pdf
https://www.neliti.com/publications/90242/resampling-logistic-regression-untuk-penanganan-ketidakseimbangan-class-pada-pre
https://www.neliti.com/publications/90242/resampling-logistic-regression-untuk-penanganan-ketidakseimbangan-class-pada-pre

