Extraction of Eye and Mouth Features for Drowsiness Face Detection Using Neural Network

Extraction of Eye and Mouth Features for Drowsiness Face Detection Using Neural Network

Elis Fitrianingsih, Endang Setyati, Luqman Zaman

Abstract

Facial feature extraction is the process of searching for features of facial components such as eyes, nose, mouth, and others from the human face image. Facial feature extraction is essential for initializing processing techniques such as face tracking, recognition of facial expressions or face shape recognition. Among all facial features, eye area detection is important, because of the detection and localization of the eye, the location of all other facial features can be identified. In this paper, we describe automated algorithms for feature extraction of eyes and mouth. Data in the form of video, from the video is then converted into a sequence of images / images through frame extraction. From the sequence of images, feature extraction is based on the morphology of the eyes and mouth using the Neural Network Back-Propagation method, after features extraction of the eye and mouth is performed, the result of the feature extraction, will later be used to detect a person drowsy or not, for other research.

Keywords

Feature Extraction; Frame Extraction; Neural Network; Back-Propagation

References

[1] S. R. Benedict and J. S. Kumar, “Geometric shaped facial feature extraction for face recognition,” 2016 IEEE Int. Conf. Adv. Comput. Appl. ICACA 2016, pp. 275–278, 2017.

[2] S. Alexander, “Program Aplikasi Pengenalan Ekspresi Wajah Secara Real Time Dengan Metode Back Propagation Dan Wavelet Haar,” 2013.

[3] D. Susantyo, “Ekstraksi Fitur Untuk Pengenalan Wajah Pada Ras Mongoloid Menggunakan Principal Component Analysis (PCA),” pp. 1–9.

[4] G. He and J. Gan, “A Method for Singular Value Feature Extraction of Face Image,” pp. 37–40, 2004.

[5] S. N. Luthfie, “Implementasi Jaringan Saraf Tiruan Backpropagation Pada Aplikasi Pengenalan Wajah Dengan Jarak Yang Berbeda Menggunakan MATLAB 7.0,” 2007.

[6] I. Hermawan, “Pengembangan Sistem Pengenalan Wajah Menggunakan Metode Generalized Learning Vector Quantization ( GLVQ ),” pp. 6–8, 2015.

[7] Husdi, “Pengenalan Ekspresi Wajah Pengguna ELearning Menggunakan Artificial Neural Network Dengan Fitur Ekstraksi Local Binary Pattern dan Gray Level Co-Occurrence Matrix,” J. Ilm. Ilk., vol. 8, no. Desember, pp. 212–219, 2016.

[8] Z. Abidin, “Pengembangan Sistem Pengenalan Ekspresi Wajah Menggunakan Jaringan Syaraf Tiruan Backpropagation (Studi Kasus Pada Database MUG),” J. Mat. Murni dan Terap., vol. 5, no. 1, pp. 21–30, 2011.

[9] S. Kusmaryanto, “Jaringan Saraf Tiruan Backpropagation untuk Pengenalan Wajah Metode Ekstraksi Fitur Berbasis Histogram,” vol. 8, no. 2, pp. 193–198, 2014.

[10] Y. D. Q. J. Ying, S. Jing, and Z. Wei, “The Monitoring Method of Driver ’ s Fatigue Based on Neural Network,” no. c, pp. 3555–3559, 2007.

Refbacks

  • There are currently no refbacks.

Referencing Software:

Checked by:

Supervised by:

Statistic:

View My Stats


Creative Commons License Kinetik : Game Technology, Information System, Computer Network, Computing, Electronics, and Control by http://kinetik.umm.ac.id is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.