
Syaifuddin, S., Sari, Z., & Masduqi, M. (2018). Analysis of Uapush Malware Infection using Static and
Behavior Method on Android. Kinetik : Game Technology, Information System, Computer Network,

Computing, Electronics, and Control, 3(1). http://dx.doi.org/10.22219/kinetik.v3i1.265

Paper submitted on July 22, 2017; Revision on July 26, 2017; Received August 01, 2017

KINETIK, Vol. 3, No. 1, February 2018, Pp. 81-90
 ISSN : 2503-2259
 E-ISSN : 2503-2267

81

Analysis of Uapush Malware Infection using Static and
Behavior Method on Android

Syaifuddin*1, Zamah Sari2, Mohammad Khairul Masduqi3

1,2,3 Universitas Muhammadiyah Malang
saifuddin@umm.ac.id*1, abdzamahsari@umm.ac.id2, khairulmasduqi@webmail.umm.ac.id3

Abstract
This research combines static and behavior analysis to detect malwares on Android

system. The analysis process was completed by implementing analysis process on a malware-
infected application running on an Android device. The analysis process was implemented based
on specific stages, started from implementing behavior analysis on a malware-infected application
running on Android device. Moreover, this behavior analysis ran the application on an Android
emulator; afterwards, the file processing running on Android would be analyzed using the tool
designed on this research to determine whether or not the executed application has been infected
by malware. By utilizing behavior analysis, this research aimed to construct LiME kernel module
being able to be executed on Android to collect data running on Android memory. This collected
data would be analyzed further using volatility as data scanning. The second analysis utilized
static analysis by checking the application on android system before running. During the static
analysis, the application extraction was executed to generate some files to be analyzed to verify
malware infection.

Keywords: Malware, Android, Virtualization, Uapush

1. Introduction
Malware, short from Malicious Software, is as hostile or intrusive software, intentionally

developed to be embedded in a computer system to steal information data and even destroy a
computer system [1].

An Android system is a Linux-based operation system having open access operation
system. Android system has some superiority from having open source operation system,
enabling multitasking, providing simple notification to great number of existing application and
software running on this system. Therefore, these advantages provided on open source Android
system, at the same time, can also bring some drawbacks by allowing open platform to all
developers (users) to design and develop their own applications running on cellular devices.
Hence, it eases software developers to develop malwares as applications to intrude Android
system [2].

There are some malware analysis techniques, some of which are malware static analysis
and malware behavior analysis. Malware static analysis is a malware analysis by checking
applications suspected as malicious, without executing the file. On the other hand, malware
behavior analysis is direct analysis by running and analyzing file system, memory, process,
network traffic, and other modifications after executing the malware [3].

Memory is divided into two types, namely non-volatile and volatile memory. The analysis
processed on non-volatile memory can be implemented to a memory retaining its data when the
system is not running, exemplified by a hard disc, flash disc, and SD/micro SD/mini SD. However,
the analysis process on volatile memory is implemented on memory such as RAM. Furthermore,
on non-volatile memory analysis, there are some possible risks related to its integrity when
implementing careless analysis processing. The analysis on volatile memory greatly reduce those
risks because the researcher had made memory duplication containing all data in the system
such as process, registry, files and system or specific applications in the system. Due to its
function as a bridge between hard disc and processor, RAM, therefore, records all previous
processes running in the system minimizing the potential risks. Even though the system itself is
inactive, the analysis process is still able to run from duplicated RAM [4].

Android system operation, having big popularity in the world, has become the main target
from malware developers. Android not designed to provide maximum security becomes the

http://dx.doi.org/10.22219/kinetik.v3i1.265
mailto:abdzamahsari@umm.ac.id

ISSN: 2503-2259; E-ISSN: 2503-2267

KINETIK Vol. 3, No. 1, February 2018: 81-90

82

following reason. Initially, old version of Android showed significant security vulnerability;
however, the following Android types exhibit adequate security level. This research employed
new Android version, Lollipop, having better security level. A question needed to be answered is
whether the types of attack and malware characteristics will exactly identical in different Android
version. Thus, in responding to this question, the research performed analysis process on Uapush
malware reported the biggest infection in 2016 for comparing between KitKat and Lollipop Android
version.

Uapush.a is a malware included in adware Trojan Android having high level of threat,
sending Short Message Service (SMS) messages, and stealing private information such as IMSI,
IMEI, important information from a device, bookmarks and call history sent to C&C server in
China. This type of malware is based on C&C located in China [5].

2. Research Method

Testing was performed to test the superiority of Lollipop and KitKat. Furthermore, this
testing was conducted to answer the existing problems often found in different version of Android
system operation related to malware infection; hence, compatibility testing was conducted, static
and behavior analysis.

The testing itself had been designed to recognize the malware characteristics of Uapush
on Android. The research ran using an Android emulator having similar functions to the original
system. There were two methods combined to achieve more complete results. The first method
employed was behavior analysis being an Android analysis technique running an application
presumably infected by malware in the emulator; afterwards, the static analysis will be conducted
by reading the application’s source code presumably infected by malware [6].

Before installation, implementation and testing process were implemented, the system
design and topology were developed. This system design would simplify the implementation and
testing processes in analyzing Uapush-type malware. The following Figure 1 illustrates the system
design.

2.1 General System Design

Figure 1. General System Design

Based on Figure 1, the research utilized victim smartphones, with rooted process and
without rooted process. In order to simplify the architecture, it employed system operations in the
form of virtual machine installed by those system operations. The input of this research is an
Android application presumably infected with Uapush-type malware. Moreover, two analysis
methods were employed using static and behavior analysis, commonly used in malware analysis
processing. Static analysis performed in this research was conducted by decompressing the APK
file and analyzing the result. Meanwhile, behavior analysis was started by running or executing
the APK file into a device following by RAM cloning [7].

Results Analysis Process

Decompress

APK File

RAM Cloning
Process

KINETIK ISSN: 2503-2259; E-ISSN: 2503-2267

Analysis of Uapush Malware Infection using Static and Behavior Method on Android
Syaifuddin, Zamah Sari, Mohammad Khairul Masduqi

83

2.2 Architecture of Dynamic Analysis
Based on previously presented Figure 2, the researcher developed virtual machines in

window host, each of them installed with rooted and non-rooted Android. Each virtual machine
was infected by Uapush-type malware resulting into 2 virtual machines. Subsequently, the
analysis process of live response on each virtual machine infected by malware was conducted
[8].

 Figure 2. Architecture of Behavior Analysis

2.3 Architecture of Static Analysis

Figure 3. Architecture of Dynamic Analysis

Figure 3 represents architecture design for analysis process in the windows host using
Windows 8.1 Pro. Dex2jar and JD-GUI had been installed in Windows system used to analyze
the application infected by Uapush-type of malware.

3. Research Result and Discussion
3.1 Dynamic Analysis

On this testing, a kernel module was created, and the results from compile LiME were
stored into the devices. The following command was used to run kernel module [9].

$adb push lime-goldfish.ko /sdcard/lime.ko

$adb forward tcp:4444 tcp:4444

$adb shell insmod /sdcard/lime.ko “path=tcp:4444 format=lime” &

After running decompile LiME in the devices, the file would be accessed by suing Netcat to
obtain capture results from the device RAM to be processed further in the analysis. The following
command was used to access the file using Netcat:

$nc localhost 4444 > lime.lime

The previous command used was LiME TCP transfer to obtain the results of device RAM
capture; consecutively, the scanning process was conducted for the results of RAM capture using
volatile. Image RAM analysis was conducted to determine the characteristics from the calculator
application infected by Uapush-type malware having characteristics of command and control
server and investigated malicious commands to steal IMEI and IMSI. Furthermore, observing
open file and running process executed by a malware infected application became two processes
conducted in this research. The analysis results are presented in the following section.

ISSN: 2503-2259; E-ISSN: 2503-2267

KINETIK Vol. 3, No. 1, February 2018: 81-90

84

3.1.1 Network Analysis
Analyzing process in network is necessary because several types of malware do

communication through network. Such communication will be restored in RAM. Therefore,
comprehensive study to analyze operating system and reverse engineering is required, volatile
memory can be the substitute to analyze this case.

There were two plugins used, linux_route_cache plugin employed to observe network route
running in the device and linux_arp plugin to observe default gateway. Table 1 presents the results
of these examinations [10].

Table 1. Network Analysis of Uapush Image RAM in KitKat

Network Analysis

Interface Eth0
Destination 117.135.141.99
Gateway 10.0.2.2

From the results obtained from the route cache running in the device, it was observed that

IP 117.135.141.99 conducted network route configuration in the device using gateway 10.0.2.2
allowing IP 117.135.141.99 to communicate with external parties. After it was checked using
Whois, the results are as Figure 4.

Figure 4. Whois C&C Server Malware

Who is informed C&C Server of Uapush-type malware was located on 200 Changhou
Road, Shanghai, China.

3.1.2 IMEI and IMSI Analysis

Linux_yarascan plugin was used to identify and obtained the proof that the application had
been infected by Uapush malware having previously installed in the device. The results are
presented by Table 2.

From the previous results, the calculator application after being installed altered its name
to kfines.RealCalc using a process running on PID 1323 having sub-process address of
0xb3f4b854 and 0xb3f4b803. It contained commands to acquire some device information such
as IMEI and IMSI.

Table 2. Analysis of Data Stealing of Uapush Image RAM in KitKat

Analysis of Data Stealing

Task kfines.RealCalc
PID 1311
Rule R1
Addr 0xb3f4b854, 0xb3f4b803

3.1.3 Open File Analysis

In order to identify the process to opening files in the infected application, the researcher
utilized linux_lsof plugin. The results are presented by Table 3.

KINETIK ISSN: 2503-2259; E-ISSN: 2503-2267

Analysis of Uapush Malware Infection using Static and Behavior Method on Android
Syaifuddin, Zamah Sari, Mohammad Khairul Masduqi

85

Table 3. Open File Analysis of Uapush Image RAM in KitKat

Open Files

Process 29 open file processes
PID 1311
Address 0xd802f400

As informed by the results, the calculator application had completed 29 open file processes

with PID process 1311 having address on 0xd802f400. Afterwards, the following analysis process
on every open file process executed by the application can be implemented in order to identify
each activity from every open file process conducted by the application infected malware.

Table 4. Analysis of Uapush Image RAM in Lollipop

File Description

File Name lime.lime
File Size 796,9 MB
Md5hash ca7debc3782bfa5893c7c2ca1148a4ac

From the result showed in Table 4, RAM Uapush run on Android Lolipop with size of 796.9

MB and named as lime.lime was aimed to perform offline analysis, in order to prevent data
alteration from Uapush-infected file through network. Therefore, Md5hash could help to prevent
significant change from backed-up RAM image.

3.1.4 Network Analysis

Linux_route_cache plugin was used to examine the network gateway running on the
device, and linux_arp plugin was used to identify its default gateway. The results are presented
by Table 5.

Table 5. Network Analysis of Uapush Image RAM in Lollipop

Network Analysis

Interface Eth0
Destination 117.135.141.99
Gateway 10.0.2.2

From the results, it was identified from the existing route cache in the device that IP

117.135.141.99 conducted network route configuration in the device using gateway 10.0.2.2 as
the gateway from device default to give access to IP 117.135.141.99 to communicate and to
collect data from the infected device. The results after checked using Whois are as Figure 5.

Figure 5. Whois C&C Server Malware

ISSN: 2503-2259; E-ISSN: 2503-2267

KINETIK Vol. 3, No. 1, February 2018: 81-90

86

Who is informed that the C&C Server of Uapush-type malware was located on 200
Changhou Road, Shanghai, China.

3.1.5 IMEI and IMSI Analysis

Linux_yarascan plugin was used to identify and acquire proof that the application infected
by Uapush malware installed in the device. The results are presented by the following Table 6.

Table 6. Analysis of Data Stealing of Uapush Image RAM in KitKat

Data Stealing Analysis

Task kfines.RealCalc
PID 1323
Rule R1
Addr 0xb3f4b854, 0xb3f4b803

From the previous results, the calculator application after being installed altered its name

to kfines.RealCalc using a process running on PID 1323 having sub-process address of
0xb3f4b854 and 0xb3f4b803. It contained commands to acquire some device information such
as IMEI and IMSI.

3.1.6 Open File Analysis

In order to identify the process to opening files in the infected application, the researcher
utilized linux_lsof plugin. The results are presented by Table 7.

Table 7. Open File Analysis of Uapush Image RAM in KitKat

Open Files

Process 27 open file processes
PID 1323
Addrs 0xd802f400

As informed by the results, the calculator application had completed 27 open file processes

with PID process 1323 having address on 0xd802f400. Afterwards, the following analysis process
on every open file process executed by the application can be implemented in order to identify
each activity from every open file process conducted by the application infected malware.
1. The Comparison of Uapush Characteristic between KitKat and Lollipop

The following parameters show the comparison results on Uapush characteristics.
2. The comparison of process executed by Uapush.

Figure 6. Comparison of Uapush Malicious Process

Figure 6 illustrates that Uapush in KitKat has more injected code and mutexes compared
to Lollipop. This condition is caused by more fragile security system in KitKat and imperfect

0

5

10

15

20

25

30

35

Kitkat Lollipop

Hasil

Malfind Lsof Yarascan

Result

KINETIK ISSN: 2503-2259; E-ISSN: 2503-2267

Analysis of Uapush Malware Infection using Static and Behavior Method on Android
Syaifuddin, Zamah Sari, Mohammad Khairul Masduqi

87

running of file configuration from Uapush kernel code. Having more mutexes in KitKat compared
to Lollipop allowed unidentified running of malicious processes.

3.2 Testing Static Analysis

Static analysis becomes the second stage in malware analysis. It was started by choosing
or finding application presumably infected with Uapush malware, the application was downloaded
from http://www.down20.com/f-883953215. An android application detected to be infected by
android malware would be analyzed using static analysis. The application infected by malware
having APK extension renamed into ZIP extension. Afterwards, it was extracted by suing WinRAR
because an APK file can be illustrated as an archive (a ZIP file) containing Dalvix Executable File
(with DEX extension). The result of this extraction contains some files having files with DEX
extension. Those DEX files, after that, were converted into JAR format using Dex2jar resulting a
file with JAR extension.

The last step was decompiling JAR file using JD-GUI in order to be compatible with all Java
source codes examined and analyzed to detect android malware infection. This malware is
commonly embedded in the main application’s class file or – in some cases – a specific root.
Subsequently, the malware process in the android system would be analyzed. Finally, analyzing
the resulting effects to the android system was conducted.

3.2.1 Analysis Process

On the previous process using dynamic analysis, the RealCalc.apk application would be
scanned to detect malware. From the previous analysis results, the application was detected to
be infected by malware with abnormality in some required permissions.

Figure 7. Detail Permission on File RealCalc.apk

The researcher performed analysis to RealCalc.apk application using some computer
forensic tools. Renaming APK extension into ZIP extension was the first process conducted.
RealCalc.zip file, as the result, was then extracted using WinRAR software generating some files
having DEX extension.

Utilizing Dex2jar software, those DEX files were converted in the command prompt window
generating a JAR file. The last process was decompiling JAR file using JD-GUI to examine the
whole Java source code in the RealCalc.apk application. Figure 7 presents class file named
Pushservice.class, actually unnecessary in RealCalc.apk application.

Figure 8. Commands to Examine IMEI and IMSI

http://www.down20.com/f-883953215

ISSN: 2503-2259; E-ISSN: 2503-2267

KINETIK Vol. 3, No. 1, February 2018: 81-90

88

As presented in Figure 8, a source code containing “TelephonyManager” having function
to gather IMEI (International Mobile Equipment Identity) and IMSI (Information Mobile Subscriber
Identity) data from the Android infected by Uapush malware.

 After reading IMEI and IMSI data, this malware collected these data. Both IMEI and IMSI
are personal identity from every cellular device including an Android device. The information
regarding IMEI and IMSI in an Android device was sent to a server having IP 117.135.141.99 with
PORT 9000.

Figure 9. Script Used to Steal IMEI and IMSI Information from the Android Device

In the case of RealCalc application, the android malware started to be active after installed
and run in the android device. The Uapush malware then read and collect IMEI and IMSI
information from the infected device undetected by the user.

From those conducted analyses to the Java source code of RealCalc.apk application, this
research summarized the malware processes infected RealCalc.apk application. This malware
was active after RealCalc.apk was installed in the android device. Moreover, it ran malicious
commands as well as new service in the device installed with RealCalc.apk.

4. Conclusion
The conducted implementation and testing results from the final paper entitled “Analysis of

Uapush Malware Infection using Static and Behavior Method on Android” presents results as
follows:
1. Malware analysis using image RAM capture results obtained from LiME in an Android should

be implemented by developing kernel according to the device version used in the research
resulting accurate data to illustrate the whole system activity.

2. Malware analysis using static method reveals more complete results to illustrate the workflow
of an application before running.

3. By using malware characteristics, the analysis process is important to examine the overall
malware activity in the system. All malware characteristics were identified in this research from
behavior analysis.

4. The research shows the comparison discrepancy in the number of malware in the Android
system between KitKat and Lollipop. The number of mutexes and malicious processes in
KitKat is considered higher than those of the Lollipop presented by Graphic 1. This condition
is caused by weaker security system in KitKat; hence, malwares can easily multiply the number
of mutexes by camouflaging themselves in different processes.

References
[1] A. Kurniawan and Y. Prayudi, “Live Forensics Technique on Zeus Malware Activities to

Support Malware Forensic Investigation,” HADFEX (Hacking Digital Forensics Exposed),
June 2014, Pp. 1–5, 2014.

[2] R. Novrianda, Y. N. Kunang, and P. H. Shaksono, “Malware Forensics Analysis in Android
Platform,” 2014.

[3] P. Richardus and E. Indrajit, “Malware Analysis.”
[4] R. A. Pangestu, “Analysis of Top 3 High Level Malware Infections on Zeroaccess,

Alureon.dx, and Zeus using Digital Forensics based on Volatile Memory in Windows XP and
Windows 7 Operation Systems,” University of Stuttgart, No. 9560291, Pp. 2–4, 2012.

[5] N. Threat, I. Report, N. Security, N. Threat, and I. Laboratories, “Nokia Threat Intelligence
Report,” 2016.

[6] Y.-H. C. Ming-yang su, Kek-Tung Fung, Yu-Hao Huang, and Ming-Zhi Kang, “Detection of
Android Malware: Combined with Static Analysis and Dynamic Analysis,” IEEE, Pp. 1013–
1018, 2016.

KINETIK ISSN: 2503-2259; E-ISSN: 2503-2267

Analysis of Uapush Malware Infection using Static and Behavior Method on Android
Syaifuddin, Zamah Sari, Mohammad Khairul Masduqi

89

[7] M. F. Agung, “Basic Concept of Malware Analysis,” 2011.
[8] R. Adenansi and L. A. Novarina, “Malware Dynamic,” Vol. 1, Pp. 37–43, 2017.
[9] F. Freiling, “Practical Infeasibility of Android Smartphone Live Forensics,” Practical

Infeasibility of Android Smartphone Live Forensics, 2015.
[10] Carbone, Richard. “Malware Memory Analysis of the IVYL Linux Rootkit: Investigating a

Publicly Available Linux Rootkit Using the Volatility Memory Analysis Framework,” Defence
Research and Development Canada-Valcartier Research Centre Quebec, Quebec Canada,
2015.

ISSN: 2503-2259; E-ISSN: 2503-2267

KINETIK Vol. 3, No. 1, February 2018: 81-90

90

